Mills MGC

INX-10A Series

Intelligent NAC Expander Panel

Table of Contents

1.0 Introduction 10
1.1 The INX-10A Intelligent NAC Expander Panel 11
2.0 INX-10A Overview 13
2.1 INX-10A Components 14
3.0 Installation 15
3.1 Enclosure Dimensions 15
3.2 INX-10ADS Mechanical Installation 15
3.3 INX-10AC Mounting Instructions 17
3.4 Enclosure Dimensions 18
3.5 Installing the INX-10A Enclosure 18
3.6 Chassis Board Connections 21
4.0 Indication \& Controls 22
4.1 Indication and Controls 23
5.0 Operation 26
5.1 Circuit Types 27
5.2 Intelligent NAC Expander (INX) Modes 28
5.3 Power Supply Modes 29
5.4 Evacuation Codes 30
5.5 Horn Strobe Rates 30
6.0 Configuration 32
6.1 DIP Switches 33
6.2 DIP Switch Configuration 34
6.3 Single Stage Addressing 43
6.4 Two Stage Addressing Options 55
6.5 Single Stage Configuration in FleX-Net ${ }^{\text {TM }}$ FX-4000 70
6.6 Two Stage Addressing Options in FleX-Net ${ }^{\text {TM }}$ FX-4000 76
6.7 Single Stage Configuration in FX-400/401 84
6.8 Two Stage Addressing Options in FX-401 90
6.9 Independent Mode Configuration Options 97
7.0 Wiring 101
7.1 Wiring Tables 102
7.2 Main Board Terminal Connections 103
7.3 Power Supply Connections 115
7.4 System Checkout 116
7.5 Troubleshooting 116
8.0 Appendix A - Specifications and Features 118
9.0 Appendix B - Power Supply \& Battery Calculations 119
10.0 Appendix C - Sample Applications 120
10.1 Minimal Size Single Stage Addressable System - Factory Default Settings 120
10.2 Minimal Two Stage Addressable System. 121
10.3 Minimal ULC Two Stage Addressable System 122
11.0 Appendix D - FX-2000 and FleX-Net Series ULI Compatible Devices 123
11.1 Horns and Bells 123
11.2 Synchronized Strobes 123
11.3 UL and ULC Listed Compatible Horn/Strobes 123
11.4 ULI Compatible Horn/Strobes 123
11.5 ULC Compatible Horn/Strobes 125
12.0 Warranty and Warning Information 127

List of Figures

Figure 1 INX-10ADS Installation Instructions and Dimensions 16
Figure 2 INX-10AC Mounting Instructions 17
Figure 3 INX-10A Dimensions 18
Figure 4 FA-300TR Dimensions 19
Figure 5 Flush mounting the enclosure 19
Figure 6 INX-10A Chassis Board Connectors and Jumpers 21
Figure 7 Main Board highlighting Common Indicators, Trouble LED's, Other LEDs 23
Figure 8 Common Indicators 24
Figure 9 Trouble LEDs 24
Figure 10 Additional LEDs 25
Figure 11 Evacuation Codes 31
Figure 12 DIP switch positions 33
Figure 13 DIP switch address example 34
Figure 14 Configurator CLIP/Advance Protocol Device Address Space window 38
Figure 15 FX-2000 Configurator Settings - INX-10A Single Stage with Basic Reporting 44
Figure 16 Secutron MR-2100/2200/2900 Configuration Settings - INX-10A Single Stage with Basic Reporting 45
Figure 17 FX-3500/3500RCU/MR-3500/3500RCU Configuration Settings - INX-10A Single Stage with Basic Reporting 45
Figure 18 FX-2000 Configurator Settings - INX-10A Single Stage with Enhanced Reporting 47
Figure 19 Secutron MR-2100/2200/2900 Configuration Settings - INX-10A Single Stage with Enhanced Reporting 48
Figure 20 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Single Stage with Enhanced Reporting 48
Figure 21 FX-2000 Configurator Settings - INX-10A Single Stage with Basic Reporting and Power Supply Output 50
Figure 22 Secutron MR-2100/2200/2900 Configurator Settings - INX-10A Single Stage with Basic Reporting and Power Supply Output 51
Figure 23 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Single Stage with Basic Reporting and Power Supply Output 51
Figure 24 FX-2000 Configurator Settings - INX-10A Single Stage with Enhanced Reporting and Power Supply Output 53
Figure 25 Secutron MR-2100/2200/2900 Configurator Settings - INX-10A Single Stage with Power Supply Output 54
Figure 26 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Single Stage with Enhanced Reporting and Power Supply Output 54
Figure 27 FX-2000 Configurator Settings - INX-10A Two Stage with Basic Reporting 57
Figure 28 Secutron MR-2100/2200/2900 Configurator Settings - INX-10A Two Stage with Basic Reporting 57
Figure 29 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Two Stage with Basic Reporting 58
Figure 30 FX-2000 Configurator Settings - INX-10A Two Stage with Enhanced Reporting 60
Figure 31 Secutron MR-2100/2200/2900 Configurator Settings - INX-10A Two Stage with Enhanced Reporting 61
Figure 32 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Two Stage with Enhanced Reporting 61
Figure 33 FX-2000 Configurator Settings - INX-10A Two Stage with Power Supply Output 64
Figure 34 Secutron MR-2100/2200/2900 Configurator Settings - INX-10A Two Stage with Power Supply Output 64
Figure 35 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Two Stage with Power Supply Output 65
Figure 36 FX-2000 Configurator Settings - INX-10A Two Stage with Enhanced Reporting and Power Supply Addressing 68
Figure 37 Secutron MR-2100/2200/2900 Configurator Settings - INX-10A Two Stage with Enhanced Reporting and Power Supply Addressing 68
Figure 38 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Two Stage with Enhanced Reporting and Power Supply Addressing 69
Figure 39 Add Devices Window 69
Figure 40 MGC-4000 Configurator Settings - INX-10A Single Stage with Basic Reporting 71
Figure 41 MGC-4000 Configurator Settings - INX-10A Single Stage with Enhanced Reporting 72
Figure 42 MGC-4000 Configurator Settings - INX-10A Single Stage with Basic Reporting and Power Supply Output 74
Figure 43 MGC-4000 Configurator Settings - INX-10A Single Stage with Enhanced Reporting and Power Supply Output 76
Figure 44 MGC-4000 Configurator Settings - INX-10A Two Stage with Basic Reporting 78
Figure 45 MGC-4000 Configurator Settings - INX-10A Two Stage with Enhanced Reporting 80
Figure 46 MGC-4000 Configurator Settings - INX-10A Two Stage with Power Supply Output 82
Figure 47 MGC-4000 Configurator Settings - INX-10A Two Stage with Enhanced Reporting and Power Supply Addressing 84
Figure 48 MGC-400 Configurator Settings - INX-10A Single Stage with Basic Reporting 85
Figure 49 MGC-400 Configurator Settings - INX-10A Single Stage with Enhanced Reporting 86
Figure 50 MGC-400 Configurator Settings - INX-10A Single Stage with Basic Reporting and Power Supply Output 88
Figure 51 MGC-400 Configurator Settings - INX-10A Single Stage with Enhanced Reporting and Power Supply Output 89
Figure 52 MGC-400 Configurator Settings - INX-10A Two Stage with Basic Reporting 91
Figure 53 MGC-400 Configurator Settings - INX-10A Two Stage with Enhanced Reporting 93
Figure 54 MGC-400 Configurator Settings - INX-10A Two Stage with Power Supply Output 94
Figure 55 MGC-400 Configurator Settings - INX-10A Two Stage with Enhanced Reporting and Power Supply Addressing 96
Figure 56 Main Board Terminal Blocks 103
Figure 57 SLC Loop Wiring - Class B 104
Figure 58 SLC Loop Wiring - Class A 104
Figure 59 Synchronized Input from FACP Wiring - Class B 105
Figure 60 Synchronized Input from FACP Wiring - Class A 106
Figure 61 Synchronized Input from INX-10A Wiring - Class B Single Follower 107
Figure 62 Synchronized Input from INX-10A Wiring - Class B Multiple Followers 108
Figure 63 Synchronized Input from INX-10A Wiring - Class B Multiple Followers 109
Figure 64 Relay Contact Activation from FACP - Single Stage 110
Figure 65 Relay Contact Activation from FACP - Two Stage 111
Figure 66 Relay, Ground Supervision and Auxiliary Supply Wiring 112
Figure 67 Relay, Ground Supervision and Auxiliary Supply Wiring 112
Figure 68 NAC Circuit Wiring - Class B 113
Figure 69 NAC Circuit Wiring - Class A 113

Figure 70 Example door holder wiring on NAC4 and NAC5 ... 114
Figure 71 NAC4 and NAC5 Supervision .. 114
Figure 72 Power Supply Connections .. 115

List of Tables

Table 1 Compatible Fire Alarm Control Panels 11
Table 2 INX-10A Components 14
Table 3 INX-10A Chassis Board Connectors and Jumpers 21
Table 4 Setting INX-10A Base Address/ Disabling Addressable Loop Interface 34
Table 5 INX-10A Base Address DIP switch positions 35
Table 6 Setting Protocols, Enabling Second Stage, Setting AC Fail Reporting, Enabling Charger, Battery Installed 39
Table $7 \quad$ Charger Settings, Synchronization Settings, NAC Input Settings 40
Table 8 Setting Alert Rates, Evacuation Rates, NAC 5 Output Functions 41
Table 9 Setting Strobe Types, NAC 1-3 Supply Settings, NAC 4 Output Function 42
Table 10 Configuring Single Stage Functions 44
Table 11 Configuring Single Stage with Enhanced Reporting Functions 46
Table 12 Assigning Addresses - Single Stage with Basic Reporting and Power Supply Output 50
Table 13 Assigning Addresses - Single Stage Application, 1 Power Supply Output 53
Table 14 Configuring Two Stage Functions 55
Table 15 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting 59
Table 16 Assigning Addresses - Two Stage Application, 1 Power Supply Output 62
Table 17 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing 67
Table 18 Configuring Single Stage Functions 70
Table 19 Configuring Single Stage Functions 71
Table 20 Assigning Addresses - Single Stage with Basic Reporting and Power Supply Output 73
Table 21 Assigning Addresses - Single Stage Application, 1 Power Supply Output 75
Table 22 Configuring Two Stage Functions 77
Table 23 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting 78
Table 24 Assigning Addresses - Two Stage Application, 1 Power Supply Output 81
Table 25 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing 83
Table 26 Configuring Single Stage Functions 85
Table 27 Configuring Single Stage Functions 86
Table 28 Assigning Addresses - Single Stage with Basic Reporting and Power Supply Output 87
Table 29 Assigning Addresses - Single Stage Application, 1 Power Supply Output 89
Table 30 Configuring Two Stage Functions 90
Table 31 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting 92
Table 32 Assigning Addresses - Two Stage Application, 1 Power Supply Output 94
Table 33 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing 95
Table 34 Independent Mode DIP Switch Settings - NAC1 and NAC2 configured as Signals 97
Table 35 Independent Mode DIP Switch Settings - NAC1, NAC2 and NAC3 configured as Signals 99
Table 36 Wiring Table for Input Circuits 102
Table 37 Wiring Table for NAC and Auxiliary Power Circuits 102
Table 38 Difference between features provided by SLC Interface and Contact Interface 110
Table 39 Power Supply Electrical Ratings 115
Table 40 INX-10A, INX-10ADS and INX-10AC Specifications and Features 118
Table 41 FX-2000 and FleX-Net Series ULI Compatible Horns and Bells 123
Table 42 FX-2000 and FleX-Net Series ULI Compatible Synchronized Strobes 123
Table 43 UL and ULC Listed Compatible Horn/Strobes 123
Table 44 ULI Compatible Horn/Strobes 123
Table 45 ULC Compatible Horn/Strobes 125

1.0 Introduction

This document provides information for the successful installation, operation and configuration of the INX-10A, the INX-10ADS, and the INX-10AC. Unless specifically mentioned, INX-10A can hereafter be used to refer to any of the INX-10A, the INX-10ADS, or the INX-10AC.

This chapter explains

- Feature Overview

1.1 The INX-10A Intelligent NAC Expander Panel

Mircom's INX-10A is an Intelligent NAC Expander Panel and operates in CLIP (Classic Loop Interface Protocol) mode. Available as a 10 Amp configuration, the INX-10A extends the power capabilities of existing notification appliance circuits and provides power for other ancillary devices.

The INX-10A also has the ability to operate with any UL Listed 24 VDC conventional fire alarm control panel to provide Notification Appliance Circuit expansion.

1.1.1 Compatible Fire Alarm Control Panels

Table 1 Compatible Fire Alarm Control Panels

Manufacturer	Fire Alarm Control Panel Series
Mircom	FleX-Net ${ }^{\text {TM }}$
	FleX-Net ${ }^{\text {TM }}$ FX-4000
	FX-400 Series
	FX-2003-12N
	FX-2017-12N
	FX-2009-12N
	FX-2003-6
	FX-2003-12
	FX-2003S-12
	FX-2017-12A
	FX-2017S-12A
	FX-2009-12
	FX-2009S-12
	FX-3500
	FX-3500RCU
Secutron	MR-2100 / MR-2200 Series
	MR-2900 Series
	MR-3500/3500RCU

1.1.2 Features

- Supports 2 synchronized panels on one node to meet sync timing requirements
- Up to 6 INX-10A panels per loop
- Outputs used as power supply outputs do not require panel configuration or SLC addresses
- Utilizes DIP switches for configuration
- DC regulated outputs
- Configurable NAC, Power and Door Holder Outputs
- Configurable AC Power fail delay
- Enable or disable Ground fault
- Separate Relay for Ground Fault and Common Trouble available on terminals
- Enable or disable the Battery Charger on activation
- Class A or B output signals
- Horn/Strobe sync protocols include Mircom, Amseco, Gentex, System Sensor and Wheelock
- Ability to sync outputs for multiple INX-10A units
- 2 wire horn/strobe Sync mode allows audible notification appliances (horns) to be silenced while visual notification appliances (strobes) continue to operate
- Audible signals may be configured for Steady, Temporal Code, California Code and March Time
- Output fault notification to FACP
- Built-in charger for sealed lead acid or gel type batteries up to and including 40 Ah storage capacity
- Enclosure fits 4 Ah, 7 Ah, and 12 Ah batteries. 18 Ah batteries will fit in the INX-10ADS only. The INX-10A series can charge 40 Ah batteries but they must be placed in an external battery cabinet (BC-160)
- 2.5 Amp max current per output
- 1.7 Amp auxiliary power output
- Unit includes power supply and charger, red enclosure, cam lock, transformer and battery leads
- Compatible with 24VDC fire panels
- Surface or flush-mountable

1.1.3 General Notes

Circuits And Zones

Circuits refers to an actual electrical interface, Input (Detection), NAC Notification Appliance Circuit) which connect audible and visible notification appliances to the fire alarm system control unit (Signal), or Relay.

Wiring Styles

- Input Circuits are configured as Class B (Style B)
- NAC Circuits may be individually wired as Class A (Style Z) or Class B (Style Y) without affecting the number of circuits available
- Signal Line Circuit Class X (Style 7) and Class B (Style 4)

2.0 INX-10A Overview

This chapter lists the components of the INX-10A.

This chapter explains

- INX-10A Components

2.1 INX-10A Components

The following table describes the components of the INX-10A.
Table 2 INX-10A Components

	Model	Description	
\vdots			

3.0 Installation

This chapter describes the installation of the INX-10ADS, INX-10AC, and INX-10A.

This chapter explains

- How to mount the Enclosure
- Main Chassis Board Connections

3.1 Enclosure Dimensions

Dimensions of Enclosure (minus built in trim ring)	$14.5 " \times 4.2^{\prime \prime} \times 26^{\prime \prime}$
Distance between horizontal mounting screws	$12 "$
Distance between vertical mounting screws	$23.5^{\prime \prime}$
Complete Dimensions of Enclosures	$16.3^{\prime \prime} \times 5.5^{\prime \prime} \times 27.5^{\prime \prime}$

3.2 INX-10ADS Mechanical Installation

The INX-10ADS comes with an BBX-1024DS or BBX-1024DSR enclosure which are suitable for flush or surface mounting, and have a built-in trim ring.

Figure 1 INX-10ADS Installation Instructions and Dimensions

3.2.1 Installation Tips

- Group the incoming wires through the top of the enclosure. Use a wire tie to group wires for easy identification and neatness.
- Be sure to connect a solid Earth Ground (from building system ground / to a cold water pipe) to the Chassis Earth Ground Mounting Lug, and to connect the Earth Ground Wire Lugs from the Main Chassis to the ground screw on the Backbox.

Attention: DO NOT install cable through bottom of the box. This space is reserved for Batteries.

3.3 INX-10AC Mounting Instructions

The INX-10AC mounts into the BB-5008 or BB-5014 enclosure as shown in Figure 2.

Figure 2 INX-10AC Mounting Instructions

3.4 Enclosure Dimensions

Outer Dimensions

Distance between upper mounting screws
Distance between lower mounting screws
Distance between upper and lower mounting screws
FA-300TR Dimensions
$14.23^{\prime \prime} \times 4.42^{\prime \prime} \times 19.85$ "
11"
11"
14.1"
$17^{\prime \prime} \times 22.5^{\prime \prime}$

3.5 Installing the INX-10A Enclosure

The INX-10A can be surface mounted with four screws as shown in Figure 3 or flush mounted as shown in Figure 5 on page 19.

Figure 3 INX-10A Dimensions

To Surface Mount the Enclosure

1. Using the INX-10A back plate as a template, mark the top of the two mounting hole locations 11" apart as shown in Figure 3.
2. Place the screws halfway into the wall in the position shown using a suitable screw.
3. Hang the box onto the two screws.
4. Screw the other two screws at the bottom of the panel.
5. Tighten all four screws into place.

Figure 4 FA-300TR Dimensions

Figure 5 Flush mounting the enclosure

To Flush Mount the Enclosure

1. Unscrew and remove Main Chassis and Transformer from the enclosure.
2. Unscrew the wingnut and remove the door.
3. Mount the backbox into the wall.
4. After the wall is finished, peel the adhesive cover from the trim ring and stick to the wall surface around the backbox.

Note: Figure 3 shows a cross-section of the semi-flush mounted backbox and the trim ring. Allow a minimum depth of 1 " above the wall surface for proper door opening.

3.5.1 Installation Tips

- Group the incoming wires through the top of the enclosure. Use a wire tie to group wires for easy identification and neatness.
- Be sure to connect a solid Earth Ground (from building system ground / to a cold water pipe) to the Chassis Earth Ground Mounting Lug, and to connect the Earth Ground Wire Lugs from the Main Chassis to the ground screw on the Backbox.

Attention: DO NOT install cable through bottom of the box. This space is reserved for Batteries.

3.6 Chassis Board Connections

The Main Chassis is preinstalled in the INX-10A Enclosure as shown in Figure 1. The connections are shown in Figure 6 and are described in Table 3.

Figure 6 INX-10A Chassis Board Connectors and Jumpers
Table 3 INX-10A Chassis Board Connectors and Jumpers

Connector/Jumper	Description
P1,2	Connection for 29VAC AC In
P3,4	Connection to Battery Red(+) to P3 Black(-) to P4
JW1	Auxiliary Power Supervision. Factory set ON. Leave in place for supervision. Remove for non-supervision.
JW2	Factory set (closed), leave in place.

4.0 Indication \& Controls

This chapter describes the LED indicators and controls of the INX-10A.

This chapter explains

- Main Chassis Board LED Indicators
- Flash Rates
- Acknowledge button
- DIP switches

4.1 Indication and Controls

The INX-10A has 5 main annunciation indicators located on the main display panel. For troubleshooting purposes there are 3 trouble LED indicators located directly on the main board. There are also other LED's for SLC activity, synchronized input and output activity, and trouble and alarm relay. These indicators are only visible after opening the enclosure. Indicators may be Amber, Red, or Green, and may illuminate continuously (steady), or at the Trouble Flash Rate. For additional information see section 4.1.4 on page 25.

There is one control button, the acknowledge button, located underneath the main display panel. There are also five DIP switches used for configuration. For additional information see section 6.0 on page 32 .

Figure 7 displays the LED indicators and the control button on the INX-10A main board.

Figure 7 Main Board highlighting Common Indicators, Trouble LED's, Other LEDs

4.1.1 Common Indicators

The main display panel has 5 common LED indicators; Power On, Add. Line Activity/Alarm, Common Trouble, Battery / Charger Trouble and CPU fail.

Power On

The Power On LED Indicator activates steady green while the main AC power is within acceptable levels. It flashes green to display a trouble when the level falls below the power-fail threshold and the panel is switched to standby (battery) power.

Addressable Line Activity / Alarm (Add. Line Activity / Alarm)
The Addressable Line Activity / Alarm Indicator flashes red whenever there is activity on the addressable circuit(s). It activates steady red when there is an alarm.

Common Trouble

The Common Trouble LED Indicator activates steady amber to indicate any active trouble and flashes for

Figure 8 Common Indicators restored troubles. To clear the trouble and reset the panel press the acknowledge button. The additional troubleshooting LED's on the main board can provide more information on what the trouble is. See section 4.1.2 below for a description.

Battery / Charger Trouble

The Battery / Charger Trouble LED Indicator activates steady amber when the Battery is either low (below 20.4 VDC), or the Battery or Charger are disconnected. It flashes amber for a restored trouble. For configuration information see section 6.2.2 on page 39.

CPU Fail

The CPU Fail LED Indicator flashes amber when the processor ceases functioning.

4.1.2 Trouble LEDs

The main board has three onboard LEDs to aid in troubleshooting. The door must be opened in order to view these LEDs.

Auxiliary Supply Trouble

Flashes amber when there is a trouble with the auxiliary

Figure 9 Trouble LEDs supply output, check for shorts or excessive load.

Synchronized Output Trouble

Flashes amber when there is a trouble with the synchronized output. Check the circuit for presence of EOL or short.

Ground Fault Trouble

Flashes amber when there is a ground fault trouble. To correct the fault, check for any external wiring touching the chassis. Jumper, a wire loop, must be installed to enable Ground Fault detection. For wiring information see section 7.2.10 on page 112. For configuration information see section 6.2.2 on page 39.

4.1.3 Other LEDs

Figure 10 Additional LEDs

Addressable (SLC) Loop Indicators

Three LEDs. Two LED's that flash green for incoming activity for each loop, and one that flashes red for outgoing loop activity.

Synchronized Input Indicators

Two LEDs. One LED on each input that flashes green for incoming activity.

Trouble Relay Indicator

One LED that is steady green for system OK.

Alarm Relay Indicator

One red LED that is steady red when an alarm is activated.

NAC Circuit Indicators

Each NAC Circuit has one red LED that flashes when activated and one amber that activates solid when a trouble occurs. To clear the trouble and reset the panel press the acknowledge button.

Synchronized Output Indicators

Two LEDs. One LED on each output that flashes green for outgoing activity.

4.1.4 Flash Rate

Trouble Flash

20 flashes per minute, 50% duty cycle.

4.1.5 Controls

Acknowledge Button

This button is used to clear any trouble indications on the INX-10A.

Configuration DIP switches

The DIP switches are used for a variety of different configuration settings. For more information see Chapter 6.0 on page 32.

5.0 Operation

This chapter describes operational capabilities of the INX-10A.

This chapter explains

- Circuit Types
- Synchronization Modes
- Power Supply Modes
- Evacuation Codes

NOTICE TO USERS, INSTALLERS, AUTHORITIES HAVING JURISDICTION, AND OTHER INVOLVED PARTIES

This product incorporates field-programmable software. In order for the product to comply with the requirements in the Standard for Control Units and Accessories for Fire Alarm Systems, UL 864, certain programming features or options must be limited to specific values or not used at all as indicated below.

Program feature or option	Permitted in UL 864? (Y/N)	Possible settings	Settings permitted in UL 864
Second Stage Enabled	YES	Second Stage Enabled/Disabled (Free loop addresses base +7 to base $+11)$	Second Stage Enabled
AC Trouble	YES	Return Specific ULC Trouble/Free loop addresses base +2 to base +4	Reporting of ULC Specific trouble is permitted
Battery/Charger Trouble	YES	Return Specific ULC Trouble/Free loop addresses base +2 to base +4	Reporting of ULC Specific trouble is permitted
Ground Fault	YES	Return Specific ULC Trouble/Free loop addresses base +2 to base +4	Reporting of ULC Specific trouble is permitted

NOTICE TO USERS, INSTALLERS, AUTHORITIES HAVING JURISDICTION, AND OTHER INVOLVED PARTIES
This product incorporates field-programmable software. In order for the product to comply with the requirements in CAN/ULC S527 Standard for Control Units for Fire Alarm Systems, certain programming features or options must be limited to specific values or not used at all as indicated below.

Program feature or option	$\begin{aligned} & \text { Permitted in CAN/ULC } \\ & \text { S527? (Y/N) } \end{aligned}$	Possible settings	Settings permitted in CAN/ULC S527
Second Stage Enabled	YES	Second Stage Enabled/Disabled (Free loop addresses base +7 to base +11)	Second Stage Enabled
AC Trouble	YES	Return Specific ULC Trouble/Free loop addresses base +2 to base +4	Reporting of ULC Specific trouble is permitted
Battery/Charger Trouble	YES	Return Specific ULC Trouble/Free loop addresses base +2 to base +4	Reporting of ULC Specific trouble is permitted
Ground Fault	YES	Return Specific ULC Trouble/Free loop addresses base +2 to base +4	Reporting of ULC Specific trouble is permitted

5.1 Circuit Types

Any failure on the SLC loop activates any configured NAC Circuits.

> Attention: If the INX-10A has configured NAC circuits the Evacuation Rate or Strobe Rate MUST be set via the appropriate DIP switches or a trouble will sound. For more information see section 6.2 .3 on page 40 and section 6.2 .4 on page 41 .

5.1.1 NAC (Output) Circuits Types

Signal

For audible devices such as bells and piezo mini-horns. While sounding, these follow the pattern appropriate for the condition;

- the configured Evacuation Code (default is Temporal Code) during Single-Stage Alarm
- Two-Stage General Alarm
- or the Alert Code during Two-Stage's Alert (First) Stage.

Strobe

For visual devices such as strobes that use no code pattern (they are continuous) and follow input contact.

Synchronized Strobes

For visual devices such as strobes that support Mircom/Amseco, System Sensor, Gentex, Wheelock proprietary code patterns, configure to the appropriate pattern.

DC Power Supply

Uses no code pattern (they are continuous) and cannot be silenced. Configured via DIP switches and is not allocated an SLC address.

5.2 Intelligent NAC Expander (INX) Modes

The INX-10A is capable of synchronizing signal rates internally or receiving the signals externally. The INX-10A also has the ability to synchronize the signal rates for another INX10A in a leader - follower relationship.

Attention: When using multiple INX-10A panels in a leader - follower relationship, always assign a lower address to the leader INX-10A panel.

5.2.1 INX Internal Sync Mode

In this mode all signal and sync strobe rates are produced in the INX-10A. When a NAC circuit is commanded by the FACP to turn on, the NAC output signals are produced based on how the DIP switches are configured.

The Sync Outputs will be activated when one of the NAC circuits has been activated. If two stage operation is used, Sync Output1 is to produce the rate for first stage signal and Sync Output 2 is to produce the second stage signal.

To enable this mode set DIP SW3, Bit 8 to zero.
For information on configuring signal and strobe rates see Table 8 on page 41 and Table 9 on page 42.

5.2.2 INX External Sync Mode

When one of the Sync Inputs is activated, the INX-10A outputs follow the signal pattern of the Sync Input. The INX-10A must be configured as a slave to operate in this mode.

All synchronization signals are supplied from the FACP or leader INX-10A.
To enable this mode for Bell Signals set DIP SW3, Bit 8 to one, and set Alert (DIP SW4, Bits 13) Evacuation (DIP SW4, Bits 4-6) and Strobe (DIP SW5, Bits 1-3) rates to zero. The NAC and Sync outputs are to follow the Sync Inputs.

To enable this mode for other signals for sync Horn Strobes, set DIP SW3, Bit 8 to one and set Alert (DIP SW4, Bits 1-3) and Evacuation (DIP SW4, Bits 4-6) to use the Strobe Manufacturer Sync Rate (1-0-0) and Strobe (DIP SW5, Bits 1-3) to match the protocol being used in the system. The NAC and Sync Outputs are to follow the Sync Inputs.

If the INX-10A loses synchronization with the FACP during alarm, the INX-10A will default to the internal configured rate. A trouble will be generated back to the FACP. The INX-10A will continue to use the default rate until the FACP is reset.

Attention: External Sync Mode cannot be used in conjunction with Independent Mode.

5.2.3 INX Mode with Redundant Input

The system continuously monitors the SLC loop. If there is no activity for a notable time (80 seconds typical), an SLC trouble will be generated. While SLC trouble is active, if either of the Sync Inputs are activated then all NAC outputs follow.

5.2.4 Independent Mode - Driving Signals and Strobes

The INX-10A can drive Signals and Strobes on separate NAC circuits.
To enabled Independent Mode set SW4 Bit 4-6 to 010, 110, 001, 101, or 011 and set SW5 Bit $1-3$ to $100,110,001$ or 101. When using a Two stage application SW4 bits $1-3$ are required to set the alert rate. For a comprehensive description of Independent Mode options see Table 9 on page 42.

5.3 Power Supply Modes

In addition to the operation modes above, some or all of the NAC outputs can be configured as power supply outputs. The circuit ratings are same as the NAC circuits. Three types of power output can be configured as described below:

5.3.1 NAC Outputs as Power Supply Outputs

Any NAC output can be configured as a power supply. SLC and Sync Inputs are ignored for the power supply outputs.

For configuration information see section 6.2.4 on page 41 and section 6.2.5 on page 42 .

5.3.2 NAC Outputs for Door Release

Only NAC 4 and/or 5 can configured for this option, NAC 4 or 5 are turned off (cut supply) when any alarm input is active. This is used for devices which must be unpowered during alarm like door releases. The output will also turned off when the primary power to the INX10A has been lost.

For configuration information see section 6.2.4 on page 41 and section 6.2.5 on page 42. For wiring see section 7.2.14 on page 114 and for supervision see section 7.2.15 on page 114.

5.3.3 NAC Outputs for 4 Wire Smoke Supply

Only NAC 4 and/or 5 can configured for this option, NAC 4 and 5 can be selected to turn-off for 4 seconds when an alarm ends (inputs inactive for more than five seconds). This is typically used to reset four wires detectors.

For configuration information see section 6.2.5 on page 42.

5.4 Evacuation Codes

5.4.1 Single stage codes

Continuous

On 100\% of the time.
Temporal Code
0.5 second on, 0.5 second off, 0.5 second on, 0.5 second off, 0.5 second on, $0.5,1.5$ second off, then repeat.

March Code
0.5 second on, 0.5 second off.

California Code

5 seconds on, 10 seconds off.

5.4.2 Two-stage codes

Alert Code
0.5 second on, 2.5 seconds off.

General Alarm
Evacuation code as selected from above.

5.5 Horn Strobe Rates

Horn Strobe rates are fixed at the following rates.

5.5.1 Single Stage

Temporal Code
3 of 0.5 second on, 0.5 second off, 1.5 second pause, then repeat.

5.5.2 Two-stage codes

Alert Code

0.5 second on, 2.5 seconds off.

Temporal Code
3 of 0.5 second on, 0.5 second off, 1.5 second pause, then repeat.

Figure 11 Evacuation Codes

6.0 Configuration

The chapter describes how to configure the INX-10A with the DIP switches located on the main board.

This chapter explains

- Using DIP Switches
- Single Stage and Two Stage Addressing
- Adding Functions in the FX-2000 configurator
- Assigning Protocols
- Trouble Reporting
- AC Fail Delay
- Charger and Battery Settings
- Synchronization Settings
- Configuring NACs
- Alert and Evacuation Rates
- Strobe Types
- Configuration for MGC addressable devices (MIX-4000)

6.1 DIP Switches

The following diagram displays the five DIP switches used by the INX-10A.

6.1.1 Using the DIP switches

Configuring the INX-10A is done with 5 banks of DIP switches. They are named SW1, SW2, SW3, SW4 and SW5. Each bank has 8 switches, numbered 1 to 8 . Flipping a switch up places it in the ON position. For the purposes of the configuration tables $\mathrm{ON}=\mathbf{1}$ and $\mathrm{OFF}=\mathbf{0}$. For an illustration of the DIP switch settings see Figure 12.

Figure 12 DIP switch positions

6.2 DIP Switch Configuration

Configuration is done via a group a five DIP switches located to the left of the LED display board.

6.2.1 Setting Loop Base Address, Disabling Addressable Loop Interface

Use DIP switch 1 to

- Enable or disable the addressable loop.
- Set the Base Address of the INX-10A.

To configure the desired address, refer to Figure 13 and Table 5.
To disable, configure all switches to 0 .
Table 4 Setting INX-10A Base Address/ Disabling Addressable Loop Interface

DIP switch 1	Bits	Default Setting = 0 \square 	Activated Setting = 1	Notes/ Additional Diagrams
swn				
	$\begin{gathered} \text { All } \\ (1-8) \end{gathered}$	Addressable Loop Disabled	Sets the INX-10A base address. For an addressing example see Figure 13.	

Address is set to 85

Figure 13 DIP switch address example

Table 5 INX-10A Base Address DIP switch positions

Address	Bit Setting	Address	Bit Setting	Address	Bit Setting	Address	Bit Setting	
1	10000000	26	01011000	51	11001100	76	00110010	
2	01000000	27	11011000	52	00101100	77	10110010	
3	11000000	28	00111000	53	10101100	78	01110010	
4	00100000	29	10111000	54	01101100	79	11110010	
5	10100000	30	01111000	55	11101100	80	00001010	
6	01100000	31	11111000	56	00011100	81	10001010	
7	11100000	32	00000100	57	10011100	82	01001010	
8	00010000	33	10000100	58	01011100	83	11001010	
9	10010000	34	01000100	59	11011100	84	00101010	
10	01010000	35	11000100	60	00111100	85	10101010	Two Stage
11	11010000	36	00100100	61	10111100	86	01101010	Application with Enhanced
12	00110000	37	10100100	62	01111100	87	11101010	Reporting
13	10110000	38	01100100	63	11111100	88	00011010	Two Stage
14	01110000	39	11100100	64	00000010	89	10011010	Basic Reporting
15	11110000	40	00010100	65	10000010	90	01011010	Single Stage
16	00001000	41	10010100	66	01000010	91	11011010	Enhanced
17	10001000	42	01010100	67	11000010	92	00111010	Reporting
18	01001000	43	11010100	68	00100010	93	10111010	
19	11001000	44	00110100	69	10100010	94	01111010	
20	00101000	45	10110100	70	01100010	95	11111010	
21	10101000	46	01110100	71	11100010	96	00000110	Application with
22	01101000	47	11110100	72	00010010	97	10000110	eporting
23	11101000	48	00001100	73	10010010	98	01000110	
24	00011000	49	10001100	74	01010010	99	11000110	
25	10011000	50	01001100	75	11010010			
100	00100110	135	11100001	170	01010101	205	10110011	
101	10100110	136	00010001	171	11010101	206	01110011	
102	01100110	137	10010001	172	00110101	207	11110011	
103	11100110	138	01010001	173	10110101	208	00001011	
104	00010110	139	11010001	174	01110101	209	10001011	
105	10010110	140	00110001	175	11110101	210	01001011	
106	01010110	141	10110001	176	00001101	211	11001011	
107	11010110	142	01110001	177	10001101	212	00101011	
108	00110110	143	11110001	178	01001101	213	10101011	
109	10110110	144	00001001	179	11001101	214	01101011	

Table 5 INX-10A Base Address DIP switch positions (Continued)

Address	Bit Setting							
110	01110110	145	10001001	180	00101101	215	11101011	
111	11110110	146	01001001	181	10101101	216	00011011	
112	00001110	147	11001001	182	01101101	217	10011011	
113	10001110	148	00101001	183	11101101	218	01011011	
114	01001110	149	10101001	184	00011101	219	11011011	
115	11001110	150	01101001	185	10011101	220	00111011	
116	00101110	151	11101001	186	01011101	221	10111011	
117	10101110	152	00011001	187	11011101	222	01111011	
118	01101110	153	10011001	188	00111101	223	11111011	
119	11101110	154	01011001	189	10111101	224	00000111	
120	00011110	155	11011001	190	01111101	225	10000111	
121	10011110	156	00111001	191	11111101	226	01000111	MGC Addressable
122	01011110	157	10111001	192	00000011	227	11000111	Devices (MIX4000) Application
123	11011110	158	01111001	193	10000011	228	00100111	with Enhanced Reporting
124	00111110	159	11111001	194	01000011	229	10100111	MGC Addressable
125	10111110	160	00000101	195	11000011	230	01100111	Devices Two Stage Application with
126	01111110	161	10000101	196	00100011	231	11100111	Basic Reporting
127	11111110	162	01000101	197	10100011	232	00010111	MGC Addressable
128	00000001	163	11000101	198	01100011	233	10010111	Stage Application with Enhanced Reporting
129	10000001	164	00100101	199	11100011	234	01010111	
130	01000001	165	10100101	200	00010011	235	11010111	
131	11000001	166	01100101	201	10010011	236	00110111	MGC Addressable Devices Single
132	00100001	167	11100101	202	01010011	237	10110111	Stage Application
133	10100001	168	00010101	203	11010011	238	01110111	with Basic
134	01100001	169	10010101	204	00110011	239	11110111	
						240	00001111	

Attention: When using multiple INX-10A panels in a leader - follower relationship, always assign a lower address to the leader INX-10A panel.
6.2.1.1 Base Address Offset for the FX-2000/FleX-Net and MR-2100/2200/2900 Series Panels

The FX-2000/FleX-Net and MR-2100/2200/2900 series of panels reserve addresses 101 to 199 for CLIP modules. As a result, you must offset the addresses of INX-10A devices by 100 when you add these devices on the FX-2000 or MR-2100/2200/2900 configurator.

6.2.1.2
 Base Address Offset for the FX-3500/3500RCU and MR-3500/3500RCU Panels

For the FX-3500/3500RCU and MR-3500/3500RCU, CLIP device addresses start at 201. As a result, you must offset the addresses of INX-10A devices by 200 when you configure these devices on the Configurator.

> Attention: The FX-3500/3500RCU and MR-3500/3500RCU panels must be configured with a CLIP address space before you can add INX-10A panels to them. See the following procedure for instructions on how to add a CLIP address space to an FX-3500/3500RCU and MR-3500/ 3500RCU.

To configure an FX-3500/3500RCU and MR-3500/3500RCU loop with a CLIP address space

1. Start the Configurator, and then open your job.
2. Select Base I/O from your job tree.

The CLIP/Advance Protocol Address Space configuration window appears. By default, the entire address space is assigned to AP devices and there is no address space reserved for CLIP modules. (That is, Allowable CLIP Addresses is set to None for both Sensors and Modules.) To reserve address space for CLIP devices, you must add the number of CLIP devices to the AP Start value.
3. Enter 100 in the AP Start column for the loop that your INX-10A is connected to, and then press the Tab key.
The entries for allowable CLIP addresses for Sensors and Modules change to 1-99 and 201-299, respectively. This allows you to enter 99 CLIP sensors and 99 CLIP modules to
the loop. Your CLIP/Advance Protocol Address window should look similar to Figure 14 (assuming your INX-10A is connected to Loop 2).

Figure 14 Configurator CLIP/Advance Protocol Device Address Space window
A value of 100 in a loop's AP Start column configures the FX-3500/3500RCU and MR-3500/ 3500 RCU with the maximum address space for CLIP modules (201-299). If you enter a smaller value for AP Start, the address space for CLIP modules and the number of CLIP devices you can add are reduced. For example, if you enter 50 in the AP Start column, the CLIP module address space for the loop changes to 201-249 and you can only configure 49 CLIP modules for that loop.

Note: For all the FX-3500/3500RCU and MR-3500/3500RCU examples in this chapter, the maximum CLIP device address space is assumed. That is, the AP Start is set to 100 and the CLIP modules address space is 201-299.

6.2.2 Setting Protocols, Reporting, Charger, Battery Installed

Use DIP switch 2 to set device protocols, enable second stage reporting, set AC fail reporting, enabling or disabling the Charger, and if a battery is installed.

Table 6 Setting Protocols, Enabling Second Stage, Setting AC Fail Reporting, Enabling Charger, Battery Installed

DIP switch 2	Bits	Default Setting = 0	Activated Setting = 1	Notes/ Additional Diagrams
	1	Setting for System Sensor devices	Setting for MGC addressable devices	For MGC addressable devices, set bit 1 to 1 and bit 2 to 0
	2	Setting for Mircom FACPs	Setting for Secutron and other non-Mircom FACPs	For non-Mircom panels Signal Silence must be configured as a Control module in the proprietary configuration software.
	3	Enable Enhanced Reporting (AC, Battery/ Charger and Earth Ground) *See Board LED's for further trouble shooting*	Free loop addresses base +2 to base +4	Base address is set by SW1
	4	Second Stage Enabled	Free loop addresses base +8 to base +12 or if Enhanced Reporting is enabled frees addresses base +11 to base +15	Base address is set by SW1
	5-6	Configure Report Delay for AC fail The digits below refer to the corresponding bit number i.e. 01 means that bit $5=0$ and bit $6=1$ see corresponding diagram		
	5-6	$00=$ No Delay		
	5-6	10 = One Hour		
	5-6	01 = Two Hours		
	5-6	11 = Three Hours		
	7	Charger Enabled	Charger Disabled	
	8	Battery Installed	No Battery Required and Charger Disabled	

6.2.3 Charger Settings, Synchronization Settings, NAC Input Settings

Use DIP switch 3 to configure charger, synchronization and NAC Input settings.
Table 7 Charger Settings, Synchronization Settings, NAC Input Settings

DIP switch 3	Bits	$\text { Default Setting = } 0$ \square	Activated Setting $=1$	Notes/ Additional Diagrams
SW1 \square SW2 \square SW3 \square SW4 \square SW5 \square	1	Charger Cut When all NACs activated	Charger Always "ON"	Remember Bit 7 on DIP Switch 2 must be set to "OFF" to enable Charger
	2	Setting for FleX-Net ${ }^{\text {TM }}$ FX-4000	Setting for FX-400 series	This switch has an effect only if bit 1 on DIP Switch 2 is " $O N$ "
	3-6	Reserve		
		Independent Mode NAC 1 and 2 = Signals Configured NACs = Sync Strobes	Independent Mode NAC 1 to 3 = Signals Configured NAC's = Sync Strobes	For a comprehensive description of Independent Mode options see section 6.9 on page 97.
	7	Independent mode is active if SW4 Bit 4-6 Evacuation Rates is set to 010, 110, 001, 101, or 011 AND SW5 Bit 1-3 Setting Strobe Manufacturer Type set to 100, 110,001 or 101.		
	8	Synchronous Signal Leader	Synchronous Signal Follower	

Attention: If Independent Mode is not being used SW3-7 must be set to OFF.
sw3

6.2.4 Setting Alert Rates, Evacuation Rates, NAC 5 Output Functions

Use DIP switch 4 to configure Alert and Evacuation Rates, and NAC Output functions.
Table 8 Setting Alert Rates, Evacuation Rates, NAC 5 Output Functions

DIP switch 4	Bits	$\text { Default Setting = } 0$	Activated Setting $=1$	Notes/ Additional Diagrams
SW1 \square SW2 \square SW3 \square SW4 \square SW5 \square	1-3	Setting Alert Rates (Alert Rates are only used in Two Stage Applications)		
	1-3	000 - Disable (No Output)		
	1-3	100 - Uses Strobe Manufacturer Sync Rate		
	1-3	010-Continuous		
	1-3	110-0.5s ON, 2.5s OFF, Repeat (20 PPM as in FA-1000 or FX-2000)		
	1-3	001-20 PPM, 50\% Duty Cycle		
	4-6	Setting Evacuation Rates		
	4-6	If the INX-10A has NAC circuits configured the Evacuation Rate or Strobe Rate MUST be enabled or a trouble will sound.		
	4-6	100 - Uses Strobe Manufacturer Sync Rate NOT AFFECTED BY SIGNAL SILENCE		
	4-6	010 - Continuous		
	4-6	110 - Temporal		
	4-6	001 - March Time		
	4-6	101 - California		
	4-6	011-120 PPM, 50\% Duty Cycle		
	7-8	NAC 5 Output Settings		
	7-8	00 - Normal NAC		swa
	7-8	10 - Continuous Supply		swa
	7-8	01 - Cut on Alarm		swa
	7-8	11-4 seconds Cut on Reset		swa

6.2.5 Setting Strobe Types, NAC 1-3 Supply Settings, NAC 4 Output Function

Use DIP switch 5 to configure Strobe types, NAC 1-3 settings and NAC 4 output functions.

DIP switch 5	Bits	Default Setting = 0 	Activated Setting = 1	Notes/ Additional Diagrams
SW1 \square SW2 \square SW3 \square SW4 \square SW5 \square	1-3	Setting Strobe Manufacturer		
	1-3	000 - Disable If the INX-10A has NAC circuits configured the Evacuation Rate or Strobe Rate MUST be enabled or a trouble will sound.		
	1-3	100 - Mircom/Amseco		
	1-3	010 - Not Used		
	1-3	110 - System Sensor		
	1-3	001 - Secutron/Gentex		
	1-3	101 - Wheelock		
	1-3	011 - System Sensor 2 Alternate Setting		
	4	NAC 1-NAC	NAC 1 - Continuous Supply	
	5	NAC 2 - NAC	NAC 2 - Continuous Supply	
	6	NAC 3 - NAC	NAC 3 - Continuous Supply	
	7-8	NAC 4 Output Settings		
	7-8	$00-N A C$		sws
	7-8	10 - Continuous Supply		sus
	7-8	01 - Cut on Alarm		
	7-8	11-4 seconds Cut on Reset		

6.3 Single Stage Addressing

Address Assignments are done via DIP switch 2(SW2) which is located to the left of the Main LED display board. The addresses for the functions are dependent upon the Base Address of the INX Panel.

There are two types of addressing options

- Basic Reporting
- Enhanced Reporting

In addition, the addressing can be changed by having NACs configured as Power Supplies. For further information on setting the Base Address of the INX Panel see Figure 13.

Attention: Ensure that the configuration is set correctly on the INX-10A DIP switches and the Fire Panel Configuration Software.

6.3.1 Single Stage with Basic Reporting Addressing

To configure the recommended base address
Set DIP switch SW1 as:

$$
1-0-1-1-1-0-1-0
$$

ON-OFF-ON-ON-ON-OFF-ON-OFF
sw1

To configure the INX for Single Stage with Basic Reporting in a Mircom system
Set DIP switch SW2-1 to SW2-4 as: 0-0-1-1
OFF-OFF-ON-ON

SW2

To configure the INX for Single Stage with Basic Reporting in a Secutron system
Set DIP switch SW2-1 to SW2-4 as: $0-1-1-1$
OFF-ON-ON-ON
SW2

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 10 Configuring Single Stage Functions

Function	Address	Recommended Device Address
Common Trouble	Base Address	93
Signal Silence	Base Address + 1	94
Activate NAC1, return NAC1 line status	Base Address + 2	95
Activate NAC2, return NAC2 line status	Base Address + 3	96
Activate NAC3, return NAC3 line status	Base Address + 4	97
Activate NAC4, return NAC4 line status	Base Address +5	98
Activate NAC5, return NAC5 line status	Base Address +6	99

Notes: Table 10 represents all NACs configured as NAC circuits.
Mircom recommends always using the upper range of addresses available for the INX-10A.

When adding devices to FX-2000 and MR-2100/2200/2900 configurations, add 100 to the recommended device address (see Figures 15 and 16).

When adding devices to FX-3500/3500RCU and MR-3500/3500RCU configurations, add 200 to the recommended device address (see Figure 17).

If any NAC circuit is configured as a Power Supply, see section 6.3 .3 on page 49 for an explanation on addressing.

6.3.1.1 Software Configuration - Single Stage with Basic Reporting Addressing

Job5-01: INX-10A - FX-2000 Configuration Utility

File Job Insert Edit Panel Help

Base Panel (Compact Build) Loop 0 (Hardwired) Loop 1 (Hardwired) Loop 2
由 Main Display

+ Loop Adder: Node 1
Common System Status
Timers
Input Summary
Output Summary

Figure 15 FX-2000 Configurator Settings - INX-10A Single Stage with Basic Reporting

Figure 16 Secutron MR-2100/2200/2900 Configuration Settings - INX-10A Single Stage with Basic Reporting

Figure 17 FX-3500/3500RCU/MR-3500/3500RCU Configuration Settings - INX-10A Single Stage with Basic Reporting

6.3.2 Single Stage with Enhanced Trouble Reporting Addressing

To configure the recommended base address
Set DIP switch SW1

$$
\begin{aligned}
& 0-1-0-1-1-0-1-0 \\
& \text { OFF-ON-OFF-ON-ON-OFF-ON-OFF }
\end{aligned}
$$

To configure the INX for Single Stage with Enhanced Trouble Reporting in a Mircom System

Set DIP switch SW2-1 to SW2-4 as: 0-0-0-1
OFF-OFF-OFF-ON
sw2

To configure the INX for Single Stage with Enhanced Trouble Reporting in a Secutron System

Set DIP switch SW2-1 to SW2-4 as: 0-1-0-1
OFF-ON-OFF-ON
sW2

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 11 Configuring Single Stage with Enhanced Reporting Functions

Function	Address	Recommended Device Address
Common Trouble	Base Address	90
Signal Silence	Base Address + 1	91
Monitor AC trouble	Base Address + 2	92
Monitor Battery/Charger trouble	Base Address + 3	93
Monitor Earth Ground Fault	Base Address + 4	94
Activate NAC1, return NAC1 line status	Base Address + 5	95
Activate NAC2, return NAC2 line status	Base Address + 6	96
Activate NAC3, return NAC3 line status	Base Address + 7	97
Activate NAC4, return NAC4 line status	Base Address + 8	98
Activate NAC5, return NAC5 line status	Base Address + 9	99

Mircom recommends always using the upper range of addresses available for the INX-10A.

When adding devices to FX-2000 and MR-2100/2200/2900 configurations, add 100 to the recommended device address (see Figures 18 and 19).

When adding devices to FX-3500/3500RCU and MR-3500/3500RCU configurations, add 200 to the recommended device address (see Figure 20). If any NAC circuit is configured as a Power Supply see section 6.3.4 on page 52 for an explanation on addressing.

6.3.2.1 Software Configuration - Single Stage with Enhanced Trouble Reporting Addressing

Job5-01: INX-10A - FX-2000 Configuration Utility

File Job Insert Edit Panel Help

\square Base Panel (Compact Build) Loop 0 (Hardwired)
Loop 1 (Hardwired)
Loop 2
由-Main Display

+ Loop Adder: Node 1
Common System Status
Timers
Input Summary
Output Summary
Notes: Table 11 represents all NACs configured as NAC circuits.

Wixil Job5-01: INX-10A - FX-2000 Configuration Utility								- $\square \times$
File Job Insert Edit Panel Help								
```\square. Base Panel (Compact Build) Loop 0 (Hardwired) Loop 1 (Hardwired) Loop 2 \otimes-Main Display * Loop Adder: Node 1 Common System Status Timers Input Summary Output Summary```	Add	Device	Type	F1	F..	A.\| 5 T T.	Tag (Line1)	Tag (Line2)
	190	Ipt Module	Trouble Input				"NX-104* \#1	Common TidiActive
	191	Relay Opt Mod	Relay				INX-104 \#1	Signal Silence
	192	Ipt Module	Trouble Input				INX-104. \#1	AC Trouble
	193	Ipt Module	Trouble Input				INX-104\#1	Battery Trouble
	194	Ipt Module	Trouble Input				INX-104 \#1	Ground Fault
	195	Supv Opt Mod	Strobe	NS			INX-104 \#1	NAC1
	196	Supv Opt Mod	Strobe	NS			INX-104 \#1	NAC2
	197	Supv Opt Mod	Strobe	NS			INX-104\#1	NAC3
	198 199	Supv Opt Mod Supv Opt Mod	Strobe Strobe	NS			INX-104\#1	NAC4
			Stabe	NS			Nr-1aa+	NAC5

Figure 18 FX-2000 Configurator Settings - INX-10A Single Stage with Enhanced Reporting


Figure 19 Secutron MR-2100/2200/2900 Configuration Settings - INX-10A Single Stage with Enhanced Reporting


Figure 20 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Single Stage with Enhanced Reporting

### 6.3.3 Single Stage with Basic Reporting and Power Supply Output Addressing

In order to maximize the amount of addresses available, if a NAC circuit is configured as a Power Supply, the next configured NAC Circuit is assigned the address reserved for the previous Circuit.

### 6.3.3.1 Example Application

- NAC 5 configured as a Power Supply.
- INX-10A Common Trouble reporting address is 194.

To configure the recommended base address

## Set DIP switch SW1

as:

```
0-1-1-1-1-0-1-0
OFF-ON-ON-ON-ON-OFF-ON-OFF
```



To configure the INX for Single Stage with Basic Reporting in a Mircom System Set DIP switch SW2-1 to SW2-4 as: 0-0-1-1

OFF-OFF-ON-ON
sw 2


To configure the INX for Single Stage with Basic Reporting in a Secutron System
Set DIP switch SW2-1 to SW2-4 as: 0-1-1-1
OFF-ON-ON-ON
sw2


To configure NAC 5 as a Continuous Power Supply
Set DIP switch SW4-7 and SW4-8
as:
1-0
ON-OFF


Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 12 Assigning Addresses - Single Stage with Basic Reporting and Power Supply Output

Function	Address	Recommended   Device Address
Common Trouble	Base Address	94
Signal Silence	Base Address + 1	95
Activate NAC1, return NAC1 line status	Base Address + 2	96
Activate NAC2, return NAC2 line status	Base Address + 3	97
Activate NAC3, return NAC3 line status	Base Address + 4	98
Activate NAC4, return NAC4 line status	Base Address +5	99

Notes: Mircom recommends always using the upper range of addresses available for the INX-10A.

Mircom recommends always using the upper range of NACs (NAC5 then NAC4 then NAC3 etc.) when configuring as a Power Supply.

When adding devices to FX-2000 and MR-2100/2200/2900 configurations, add 100 to the recommended device address (see Figures 21 and 22).

When adding devices to FX-3500/3500RCU and MR-3500/3500RCU configurations, add 200 to the recommended device address (see Figure 23).

### 6.3.3.2 Software Configuration - Single Stage with Basic Reporting and Power Supply Output Addressing

## Job5-01: INX-10A - FX-2000 Configuration Utility



Figure 21 FX-2000 Configurator Settings - INX-10A Single Stage with Basic Reporting and Power Supply Output


Figure 22 Secutron MR-2100/2200/2900 Configurator Settings - INX-10A Single Stage with Basic Reporting and Power Supply Output


Figure 23 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Single Stage with Basic Reporting and Power Supply Output

### 6.3.4 Single Stage with Enhanced Reporting and Power Supply Output Addressing

In order to maximize the amount of addresses available, if a NAC circuit is configured as a Power Supply, the next configured NAC Circuit is assigned the address reserved for the previous Circuit.

### 6.3.4.1 Example Application

- NAC 5 configured as a Power Supply.
- INX-10A Common Trouble reporting address is 191.

To configure the recommended base address

## Set DIP switch SW1

as:

$$
1-1-0-1-1-0-1-0
$$

ON-ON-OFF-ON-ON-OFF-ON-OFF
sW1


To configure the INX for Single Stage with Enhanced Reporting in a Mircom System

## Set DIP switch SW2-1 to SW2-4 as: 0-0-0-1

OFF-OFF-OFF-ON
SW2


To configure the INX for Single Stage with Enhanced Trouble Reporting in a Secutron System

Set DIP switch SW2-1 to SW2-4 as: $0-1-0-1$
OFF-ON-OFF-ON
SW2


To configure NAC 5 as a Continuous Power Supply
Set DIP switch SW4-7 and SW4-8
as:

1-0
ON-OFF

SW4


Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 13 Assigning Addresses - Single Stage Application, 1 Power Supply Output

Function	Address	Recommended   Device Address
Common Trouble	Base Address	91
Signal Silence	Base Address + 1	92
Monitor AC trouble	Base Address + 2	93
Monitor Battery/Charger trouble	Base Address + 3	94
Monitor Earth Ground Fault	Base Address + 4	95
Activate NAC1, return NAC1 line status	Base Address + 5	96
Activate NAC2, return NAC2 line status	Base Address + 6	97
Activate NAC3, return NAC3 line status	Base Address + 7	98
Activate NAC4, return NAC4 line status	Base Address + 8	99

Notes: Mircom recommends always using the upper range of addresses available for the INX-10A.

Mircom recommends always using the upper range of NACs (NAC5 then NAC4 then NAC3 etc.) when configuring as a Power Supply.

When adding devices to FX-2000 and MR-2100/2200/2900 configurations, add 100 to the recommended device address (see Figures 24 and 25).

When adding devices to FX-3500/3500RCU and MR-3500/3500RCU configurations, add 200 to the recommended device address (see Figure 26).

### 6.3.4.2 Software Configuration - Single Stage with Enhanced Reporting and Power Supply Output Addressing

## Job5-01: INX-10A - FX-2000 Configuration Utility



Figure 24 FX-2000 Configurator Settings - INX-10A Single Stage with Enhanced Reporting and Power Supply Output


Figure 25 Secutron MR-2100/2200/2900 Configurator Settings - INX-10A Single Stage with Power Supply Output


Figure 26 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Single Stage with Enhanced Reporting and Power Supply Output

### 6.4 Two Stage Addressing Options

Address Assignments are done via DIP switch 2(SW2) which is located to the left of the Main LED display board. The addresses for the functions are dependent upon the Base Address of the INX Panel.

For further information on setting the Base Address of the INX panel see Figure 13.

Attention: Ensure that the configuration is set correctly on the INX-10A DIP switches and the Fire Panel Configuration Software.

### 6.4.1 Two Stage with Basic Reporting Addressing

To configure the recommended base address
Set DIP switch SW1 as: 0-0-0-1-1-0-1-0

OFF-OFF-OFF-ON-ON-OFF-ON-OFF

To configure the INX for Two Stage with Basic Reporting in a Mircom system

Set DIP switch SW2-1 to SW2-4 as: 0-0-1-0
OFF-OFF-ON-OFF
sw2


To configure the INX for Single Stage with Basic Reporting in a Secutron system
Set DIP switch SW2-1 to SW2-4 as: $0-1-1-0$
OFF-ON-ON-OFF
sw2


Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

## Table 14 Configuring Two Stage Functions

Function	Address	Recommended   Device Address
Common Trouble	Base Address	88
Signal Silence	Base Address +1	89
Activate NAC1, return NAC1 line status	Base Address +2	90
Activate NAC2, return NAC2 line status	Base Address +3	91
Activate NAC3, return NAC3 line status	Base Address +4	92
Activate NAC4, return NAC4 line status	Base Address +5	93

Table 14 Configuring Two Stage Functions (Continued)

Function	Address	Recommended   Device Address
Activate NAC5, return NAC5 line status	Base Address + 6	94
Second Stage NAC1	Base Address + 7	95
Second Stage NAC2	Base Address + 8	96
Second Stage NAC3	Base Address + 9	97
Second Stage NAC4	Base Address +10	98
Second Stage NAC5	Base Address + 11	99

Notes: Table 14 represents all NACs configured as NAC circuits.
Mircom recommends always using the upper range of addresses available for the INX-10A.

When adding devices to FX-2000 and MR-2100/2200/2900 configurations, add 100 to the recommended device address (see Figures 27 and 28).

When adding devices to FX-3500/3500RCU and MR-3500/3500RCU configurations, add 200 to the recommended device address (see Figure 29).

If any NAC circuit is configured as a Power Supply see section 6.4.3 on page 62 for an explanation on addressing.

### 6.4.1.1 Software Configuration - Two Stage with Basic Reporting Addressing

Hindil Job5-01: INX-10A - FX-2000 Configuration Utility											-	
File Job Insert Edit Panel Help												
$\square$ Base Panel (Compact Build) Loop 0 (Hardwired) Loop 1 (Hardwired) Loop 2   由 Main Display   由 Loop Adder: Node 1   Common System Status   Timers   Input Summary   Output Summary	Addr	Device	Type	F1	F..	A.\|	S..	T.	Tag (Line1)	Tag (Line2)		
	188	Ipt Module	Trouble Input						INX-104 \#	Common Tibl	Active	
	189	Relay Opt Mod	Relay						INX-108 \# 1	Signal Silenc		
	190	Supv Opt Mod	Strobe	NS					INX-108 \# 1	NAC 1		
	191	Supv Opt Mod	Strobe	NS					INX-104 \#1	NAC 2		
	192	Supv Dpt Mod	Strobe	NS					INX-104 \# 1	NAC 3		
	193	Supv Opt Mod	Strobe	NS					INX-104 \#1	NAC 4		
	194	Supv Dpt Mod	Strobe	NS					INX-104 \#1	NAC 5		
	195	Relay Opt Mod	Relay						INX-104 \#1	NAC 1 Secon	d Stage	
	196	Relay Opt Mod	Relay						INX-104 \#1	NAC 2 Secon	d Stage	
	197	Relay Opt Mod	Relay						INX-104 \#1	NAC 3 Secon	d Stage	
	198	Relay Opt Mod	Relay						INX-108 \#1	NAC 4 Secon	d Stage	
	199	Relay Opt Mod	Relay						INX-104 \#1	NAC 5 Secon	d Stage	

Figure 27 FX-2000 Configurator Settings - INX-10A Two Stage with Basic Reporting


Figure 28 Secutron MR-2100/2200/2900 Configurator Settings - INX-10A Two Stage with Basic Reporting


Figure 29 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Two Stage with Basic Reporting

### 6.4.2 Two Stage Address Assignment with Enhanced Trouble Reporting

To configure the recommended base address

## Set DIP switch SW1

as:

$$
1-0-1-0-1-0-1-0
$$

ON-OFF-ON-OFF-ON-OFF-ON-OFF

To configure the INX for Two Stage with Enhanced Trouble Reporting in a Mircom System

Set DIP switch SW2-1 to SW2-4 as: 0-0-0-0
OFF-OFF-OFF-OFF
sw2


To configure the INX for Two Stage with Enhanced Trouble Reporting in a Secutron System

Set DIP switch SW2-1 to SW2-4 as: 0-1-0-0
OFF-ON-OFF-OFF
SW2


Attention: Two Stage Enhanced reporting is mandatory to meet ULC requirements.

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 15 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting

Function	Address	Recommended   Device Address
Common Trouble	Base Address	85
Signal Silence	Base Address + 1	86
Monitor AC trouble	Base Address + 2	87
Monitor Battery/Charger trouble	Base Address + 3	88
Monitor Earth Ground Fault	Base Address + 4	89
Activate NAC1, return NAC1 line status	Base Address + 5	90
Activate NAC2, return NAC2 line status	Base Address + 6	91
Activate NAC3, return NAC3 line status	Base Address + 7	92
Activate NAC4, return NAC4 line status	Base Address + 8	93

Table 15 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting (Continued)

Function	Address	Recommended   Device Address
Activate NAC5, return NAC5 line status	Base Address + 9	94
Second Stage NAC1	Base Address + 10	95
Second Stage NAC2	Base Address + 11	96
Second Stage NAC3	Base Address + 12	97
Second Stage NAC4	Base Address + 13	98
Second Stage NAC5	Base Address + 14	99

Notes: Table 15 on the previous page represents all NACs configured as NAC circuits.
Mircom recommends always using the upper range of addresses available for the INX-10A.

When adding devices to FX-2000 and MR-2100/2200/2900 configurations, add 100 to the recommended device address (see Figures 30 and 31).

When adding devices to FX-3500/3500RCU and MR-3500/3500RCU configurations, add 200 to the recommended device address (see Figure 32).

If any NAC circuit is configured as a Power Supply see section 6.4.4 on page 66 for an explanation on addressing.

### 6.4.2.1 Software Configuration - Two Stage Address Assignment with Enhanced Trouble Reporting



Figure 30 FX-2000 Configurator Settings - INX-10A Two Stage with Enhanced Reporting


Figure 31 Secutron MR-2100/2200/2900 Configurator Settings - INX-10A Two Stage with Enhanced Reporting


Figure 32 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Two Stage with Enhanced Reporting

### 6.4.3 Two Stage with Basic Reporting and Power Supply Output Addressing

In order to maximize the amount of addresses available, if a NAC circuit is configured as a Power Supply, the next configured NAC Circuit is assigned the address reserved for the previous Circuit.

### 6.4.3.1 Example Application

- NAC 5 configured as a Power Supply.
- INX-10A Common Trouble reporting address is 190.

To configure the recommended base address
Set DIP switch SW1

$$
0-1-0-1-1-0-1-0
$$

as:
OFF-ON-OFF-ON-ON-OFF-ON-OFF
SW1


To configure the INX for Two Stage with Basic Reporting in a Mircom system
Set DIP switch SW2-1 to SW2-4 as: 0-0-1-0

OFF-OFF-ON-OFF
sw2


To configure the INX for Single Stage with Basic Reporting in a Secutron system
Set DIP switch SW2-1 to SW2-4 as: $0-1-1-0$
OFF-ON-ON-OFF
sw2


To configure NAC 5 as a Continuous Power Supply
Set DIP switch SW4-7 and SW4-8
as:

1-0
ON-OFF


Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 16 Assigning Addresses - Two Stage Application, 1 Power Supply Output

Function	Address	Recommended   Device Address
Common Trouble	Base Address	90
Signal Silence	Base Address + 1	91
Activate NAC1, return NAC1 line status	Base Address + 2	92
Activate NAC2, return NAC2 line status	Base Address + 3	93

Table 16 Assigning Addresses - Two Stage Application, 1 Power Supply Output

Function	Address	Recommended   Device Address
Activate NAC3, return NAC3 line status	Base Address + 4	94
Activate NAC4, return NAC4 line status	Base Address + 5	95
Second Stage NAC1	Base Address + 6	96
Second Stage NAC2	Base Address + 7	97
Second Stage NAC3	Base Address + 8	98
Second Stage NAC4	Base Address +9	99

Notes: Mircom recommends always using the upper range of addresses available for the INX-10A.

When adding devices to FX-2000 and MR-2100/2200/2900 configurations, add 100 to the recommended device address (see Figures 33 and 34).

When adding devices to FX-3500/3500RCU and MR-3500/3500RCU configurations, add 200 to the recommended device address (see Figure 35).

Troubles occurring on a NAC circuit are only reported via the first stage address.
6.4.3.2 Software Configuration -Two Stage with Basic Reporting and Power Supply Output Addressing

## Job5-01: INX-10A - FX-2000 Configuration Utility



File Job Insert Edit Panel Help
 Loop 0 (Hardwired)
Loop 1 (Hardwired)
Loop 2
$\pm$ Main Display
© Loop Adder: Node 1
Common System Status
Timers
Input Summary
Output Summary

Addr	Device	Type	F1	F..\|	A. 15	I.	Tag (Line1)	Tag (Line2)
190	Ipt Module	Trouble Input					INX-104 \#1	Common Tribl Active
191	Relay Opt Mod	Relay					INX-10A \#1	Signal Silence
192	Supv Opt Mod	Strobe	NS				INX-10A \#1	NAC 1
193	Supv Opt Mod	Strobe	NS				INX-10A \#1	NAC 2
194	Supv Opt Mod	Strobe	NS				INX-10A \#1	NAC 3
195	Supv Opt Mod	Strobe	NS				INX-10A \#1	NAC 4
196	Relay Opt Mod	Relay	NS				INX-10A \#1	NAC 1 Second Stage
197	Relay Opt Mod	Relay					INX-10A \#1	NAC 2 Second Stage
198	Relay Opt Mod	Relay					INX-104 \#1	NAC 3 Second Stage
199	Relay Opt Mod	Relay					INX-10A \#1	NAC 4 Second Stage

Figure 33 FX-2000 Configurator Settings - INX-10A Two Stage with Power Supply Output


Figure 34 Secutron MR-2100/2200/2900 Configurator Settings - INX-10A Two Stage with Power Supply Output


Figure 35 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Two Stage with Power Supply Output

### 6.4.4 Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing

In order to maximize the amount of addresses available, if a NAC circuit is configured as a Power Supply, the next configured NAC Circuit is assigned the address reserved for the previous Circuit.

Attention: Two Stage Enhanced reporting is mandatory to meet ULC requirements.

### 6.4.4.1 Example Application

- NAC 5 configured as a Power Supply.
- INX-10A Common Trouble reporting address is 187.

To configure the recommended base address

## Set DIP switch SW1

as:

$$
1-1-1-0-1-0-1-0
$$

ON-OFF-ON-OFF-ON-OFF-ON-OFF
sw1


To configure the INX for Two Stage with Enhanced Trouble Reporting in a Mircom System

Set DIP switch SW2-1 to SW2-4 as: 0-0-0-0
OFF-OFF-OFF-OFF

SW2


To configure the INX for Two Stage with Enhanced Trouble Reporting in a Secutron System

Set DIP switch SW2-1 to SW2-4 as: $0-1-0-0$
OFF-ON-OFF-OFF
sw2


To configure NAC 5 as a Continuous Power Supply
Set DIP switch SW4-7 and SW4-8
as:

1-0
ON-OFF


Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 17 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing

Function	Address	Recommended   Device Address
Common Trouble	Base Address	87
Signal Silence	Base Address + 1	88
Monitor AC trouble	Base Address + 2	89
Monitor Battery/Charger trouble	Base Address + 3	90
Monitor Earth Ground Fault	Base Address + 4	91
Activate NAC1, return NAC1 line status	Base Address + 5	92
Activate NAC2, return NAC2 line status	Base Address + 6	93
Activate NAC3, return NAC3 line status	Base Address + 7	94
Activate NAC4, return NAC4 line status	Base Address + 8	95
Second Stage NAC1	Base Address + 9	96
Second Stage NAC2	Base Address + 10	97
Second Stage NAC3	Base Address + 11	98
Second Stage NAC4	Base Address + 12	99

Notes: Mircom recommends always using the upper range of addresses available for the INX-10A.

When adding devices to FX-2000 and MR-2100/2200/2900 configurations, add 100 to the recommended device address (see Figures 36 and 37).

When adding devices to FX-3500/3500RCU and MR-3500/3500RCU configurations, add 200 to the recommended device address (see Figure 38).

Troubles occurring on a NAC circuit are only reported via the first stage address.
6.4.4.2 Software Configuration - Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing

Job5-01: INX-10A - FX-2000 Configuration Utility


File Job Insert Edit Panel Help

	$\times$		限\|			.			
```B-Base Panel (Compact Build) Loop 0 (Hardwired) Loop 1 (Hardwired) Loop 2 & Main Display```	Addr \| Device		Type	F1	F..\|	A.\| G T.		Tag (Line1)	Tag (Line2)
	187	Ipt Module	Trouble Input				INX-104 \#1	Common Tiblactive	
	188	Relay Opt Mod	Relay				INX-104 \#1	Signal Silence	
	189	Ipt Module	Trouble Input				INX-104 \# 1	AC Trouble	
	190	Ipt Module	Trouble Input				INX-108 \#1	Battery Trouble	
- Loop Adder: Node 1	191	Ipt Module	Trouble Input				INX-104 \#1	Ground Fault	
Common System Status	192	Supv Dpt Mod	Strobe	NS			INX-104 \#1	NAC 1	
- Timers	193	Supv Dpt Mod	Strobe	NS			INX-104 \#1	NAC 2	
" F Input Summary	194	Supv Dpt Mod	Strobe	NS			INX-104 \#1	NAC 3	
Input Summary	195	Supv Dpt Mod	Strobe	NS			INX-104 \#1	NAC 4	
Output Summary	196	Relay Opt Mod	Relay				INX-104 \#1	NAC 1 Second Stage	
	197	Relay Opt Mod	Relay				INX-104 \#1	NAC 2 Second Stage	
	198	Relay Opt Mod	Relay				INX-104 \#1	NAC 3 Second Stage	
	199	Relay Opt Mod	Relay				INX-104 \# 1	NAC 4 Second Stage	

Figure 36 FX-2000 Configurator Settings - INX-10A Two Stage with Enhanced Reporting and Power Supply Addressing

Figure 37 Secutron MR-2100/2200/2900 Configurator Settings - INX-10A Two Stage with Enhanced Reporting and Power Supply Addressing

dind Job5-01: INX-10A example - FX-3500 Configuration Utility						- 回	可 x	
File Job Insert Edit Panel Help								
Job Details: FX-3500 Series Base I/O ... Loop 0 (Hardwired) ... Loop 1 Loop 2 Loop 3 - Bypass Groups Hazard Zones Main Display Dialer ... Common System Status ... Input Summary -... Output Summary	Addr	Device	Type	F.\| F.	F4	C. ${ }^{\text {S }}$...\| Tag (Line1)	Tag (Line2)	
	287	Input Module [CLIP]	Trouble Input		INX-104 \#1	Common Tib	blactive	
	288	Relay Output Module (CLIP)	Relay	NF	INX-104 \# 1	Signal Silenc		
	289	Input Module (CLIP)	Trouble Input		INX-104 \#1	AC Trouble		
	290	Input Module (CLIP]	Trouble Input		INX-10A \#1	Battery Troub	uble	
	291	Input Module (CLIP]	Trouble Input		INX-108 \#1	Ground Fault		
	292	Supervised Output Module(CLIP]	Strobe	NF	INX-108 \#1	NAC1		
	293	Supervised Output Module(CLIP)	Strobe	NF	INX-10A \#1	NAC 2		
	294	Supervised Output Module(CLIP)	Strobe	NF	INX-108 \#1	NAC 3		
	295	Supervised Output Module(CLIP)	Strobe	NF	INX-104 \#1	NAC 4		
	296	Relay Output Module (CLIP)	Relay	NF	INX-10A \#1	NAC 1 Secon	ond Stage	
	297	Relay Output Module (CLIP)	Relay	NF	INX-108 \#1	NAC 2 Secon	ond Stage	
	298	Relay Output Module (CLIP)	Relay	NF	INX-104 \#1	NAC 3 Secon	ond Stage	
	299	Relay Output Module (CLIP)	Relay	NF	INX-10A \#1	NAC 4 Secon	ond Stage	
	1 \square III					\square	+	
For Help, press F1						NUM		

Figure 38 FX-3500/3500RCU/MR-3500/3500RCU Configurator Settings - INX-10A Two Stage with Enhanced Reporting and Power Supply Addressing

6.4.5 Adding Functions in the FX-2000 Configurator Software

1. Open Job in Configurator.
2. Select the appropriate loop.
3. Click INSERT > ADD DEVICE.
4. From the Add Devices window, use the drop down menus to select the type of virtual device Supv Opt Mod, the base address of the INX panel. how many NAC circuits are being supervised.
5. Click ADD > CLOSE to return to the main window.

Figure 39 Add Devices Window
6. Add the appropriate TAG(s) to the new devices by double clicking the appropriate cell.
7. To assign correlations to each virtual device right click the device and select ADD CORRELATIONS and then select the appropriate items to ADD.

6.5 Single Stage Configuration in FleX-Net ${ }^{\text {TM }}$ FX-4000

6.5.1 Single Stage with Basic Reporting Addressing

To configure the recommended base address
Set DIP switch SW1
as:

$$
0-1-0-1-0-1-1-1
$$

OFF-ON-OFF-ON-OFF-ON-ON-ON
sw1

To configure the INX for Single Stage with Basic Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-1-1
ON-OFF-ON-ON
sw2

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 18 Configuring Single Stage Functions

Function	Address	Subaddress	Recommended Device Address
Common Trouble	Base Address	1	234.1
Reserved		2	234.2
Signal Silence	Base Address + 1	1	235.1
Reserved		2	235.2
Activate NAC1, return NAC1 line status	Base Address + 2	1	236.1
Activate NAC2, return NAC2 line status	Base Address + 3	1	237.1
Activate NAC3, return NAC3 line status	Base Address + 4	1	238.1
Activate NAC4, return NAC4 line status	Base Address +5	1	239.1
Activate NAC5, return NAC5 line status	Base Address + 6	1	240.1

Notes: Table 18 represents all NACs configured as NAC circuits.
Mircom recommends always using the upper range of addresses available for the INX-10A.

If any NAC circuit is configured as a Power Supply, see section 6.3 .3 on page 49 for an explanation on addressing.

6.5.1.1 Software Configuration - Single Stage with Basic Reporting Addressing

[0, Job7-01: INX-10A - MGC-4000 Configurator

\square Job Details: FlexNetMP	Addr	Device	Type	IptMet...	F1	Tag (Line 1)	Tag (Line2)	SubType
E- Node 1	234.1	(MIX4)Input	Trouble Input	Class B		INX-10A \#1	Common trouble	
+ Base I/O	234.2	(MIX4)Input	Monitor			INX-10A \#1	Reserved	
	235.1	(MIX4)Output	Relay			INX-10A \#1	Signal Silence	
\dagger - Main Display	235.2	(MIX4)Output	Relay			INX-10A \#1	Reserved	
Mircom QLA: CPU 1	236.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 1	
Loop 1	237.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 2	
Loop 2	238.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 3	
Loop 3 - N/A	239.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 4	
Loop 4-N/A	240.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 5	
- Input Zones								
Output Zones								
\ldots Node \& CPU Status								

Figure 40 MGC-4000 Configurator Settings - INX-10A Single Stage with Basic Reporting

6.5.2 Single Stage with Enhanced Reporting Addressing

To configure the recommended base address
Set DIP switch SW1 as:

$$
1-0-0-1-0-1-1-1
$$

ON-OFF-OFF-ON-OFF-ON-ON-ON
SW1

To configure the INX for Single Stage with Enhanced Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-0-1
ON-OFF-OFF-ON
sw2

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 19 Configuring Single Stage Functions

Function	Address	Subaddress	Recommended Device Address
Common Trouble	Base Address	1	233.1
AC Trouble		2	233.2
Monitor Signal Silence	Base Address +1	1	234.1
Reserved		2	234.2
Monitor Battery/Charger trouble	Base Address + 2	1	235.1
Monitor Earth Ground Fault		2	235.2

Table 19 Configuring Single Stage Functions (Continued)

Function	Address	Subaddress	Recommended Device Address
Activate NAC1, return NAC1 line status	Base Address + 3	1	236.1
Activate NAC2, return NAC2 line status	Base Address + 4	1	237.1
Activate NAC3, return NAC3 line status	Base Address +5	1	238.1
Activate NAC4, return NAC4 line status	Base Address +6	1	239.1
Activate NAC5, return NAC5 line status	Base Address + 7	1	240.1

Notes: Table 19 represents all NACs configured as NAC circuits.
Mircom recommends always using the upper range of addresses available for the INX-10A.

If any NAC circuit is configured as a Power Supply, see section 6.3.3 on page 49 for an explanation on addressing.

6.5.2.1 Software Configuration - Single Stage with Enhanced Reporting Addressing

[0, Job7-01: INX-10A - MGC-4000 Configurator

\square Job Details: FlexNetMP	Addr	Device	Type	IptMet...	F1	Tag (Line 1)	Tag (Line2)	Si
\square Node 1	233.1	(MIX4)Input	Trouble Input	Class B		INX-10A \#1	Common trouble	
- Base I/O	233.2	(MIX4)Input	Trouble Input			INX-10A \#1	AC trouble	
	234.1	(MIX4)Output	Relay			INX-10A \#1	Signal Silence	
\pm Main Display	234.2	(MIX4)Output	Relay			INX-10A \#1	Reserved	
Mircom QLA: CPU 1	235.1	(MIX4)Input	Trouble Input	Class B		INX-10A \#1	Battery trouble	
Loop 1	235.2	(MIX4)Input	Trouble Input			INX-10A \#1	Ground Fault	
Loop 2	236.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 1	
Loop 3 - N/A	237.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 2	
Loop 3 - N/A	238.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 3	
Loop 4 - N/A	239.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 4	
...\|nput Zones	240.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 5	
- Output Zones								
-... Node \& CPU Status								

Figure 41 MGC-4000 Configurator Settings - INX-10A Single Stage with Enhanced Reporting

6.5.3 Single Stage with Basic Reporting and Power Supply Output Addressing

In order to maximize the amount of addresses available, if a NAC circuit is configured as a Power Supply, the next configured NAC Circuit is assigned the address reserved for the previous Circuit.

6.5.3.1 Example Application

- NAC 5 configured as a Power Supply.
- INX-10A Common Trouble reporting address is 235.

To configure the recommended base address

Set DIP switch SW1

as:

$$
1-1-0-1-0-1-1-1
$$

SW1
ON-ON-OFF-ON-OFF-ON-ON-ON

To configure the INX for Single Stage with Basic Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-1-1
ON-OFF-ON-ON

SW2

To configure NAC 5 as a Continuous Power Supply

Set DIP switch SW4-7 and SW4-8

 as:1-0
ON-OFF

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 20 Assigning Addresses - Single Stage with Basic Reporting and Power Supply Output

Function	Address	Subaddress	Recommended Device Address
Common Trouble	Base Address	1	235.1
Reserved		2	235.2
Signal Silence	Base Address + 1	1	236.1
Reserved		2	236.2
Activate NAC1, return NAC1 line status	Base Address + 2	1	237.1
Activate NAC2, return NAC2 line status	Base Address + 3	1	238.1
Activate NAC3, return NAC3 line status	Base Address + 4	1	239.1

Table 20 Assigning Addresses - Single Stage with Basic Reporting and Power Supply Output

Function	Address	Subaddress	Recommended Device Address
Activate NAC4, return NAC4 line status	Base Address +5	1	240.1

Notes: Mircom recommends always using the upper range of addresses available for the INX-10A.

Mircom recommends always using the upper range of NACs (NAC5 then NAC4 then NAC3 etc.) when configuring as a Power Supply.

6.5.3.2 Software Configuration - Single Stage with Basic Reporting and Power Supply Output Addressing

Job7-01: INX-10A - MGC-4000 Configurator

Figure 42 MGC-4000 Configurator Settings - INX-10A Single Stage with Basic Reporting and Power Supply Output

6.5.4 Single Stage with Enhanced Reporting and Power Supply Output Addressing

In order to maximize the amount of addresses available, if a NAC circuit is configured as a Power Supply, the next configured NAC Circuit is assigned the address reserved for the previous Circuit.

6.5.4.1 Example Application

- NAC 5 configured as a Power Supply.
- INX-10A Common Trouble reporting address is 234.

To configure the recommended base address
Set DIP switch SW1
as:

$$
0-1-0-1-0-1-1-1
$$

OFF-ON-OFF-ON-OFF-ON-ON-ON

To configure the INX for Single Stage with Enhanced Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-0-1
ON-OFF-OFF-ON

SW2

To configure NAC 5 as a Continuous Power Supply

Set DIP switch SW4-7 and SW4-8 as:

ON-OFF
sw4

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 21 Assigning Addresses - Single Stage Application, 1 Power Supply Output

Function	Address	Subaddress	Recommended Device Address
Common Trouble	Base Address	1	234.1
Monitor AC Trouble		2	234.2
Signal Silence	Base Address + 1	1	235.1
Reserved		2	235.2
Monitor Battery/Charger trouble	Base Address + 2	1	236.1
Monitor Earth Ground Fault		2	236.2
Activate NAC1, return NAC1 line status	Base Address + 3	1	237.1
Activate NAC2, return NAC2 line status	Base Address + 4	1	238.1
Activate NAC3, return NAC3 line status	Base Address + 5	1	239.1
Activate NAC4, return NAC4 line status	Base Address + 6	1	240.1

Notes: Mircom recommends always using the upper range of addresses available for the INX-10A.

Mircom recommends always using the upper range of NACs (NAC5 then NAC4 then NAC3 etc.) when configuring as a Power Supply.
6.5.4.2 Software Configuration - Single Stage with Enhanced Reporting and Power Supply Output Addressing

[0, Job7-01: INX-10A - MGC-4000 Configurator File Job Insert Edit Panel Help									
Job Details: FlexNetMP Node 1 Base I/O Main Display Mircom QLA: CPU 1 Loop 1 Loop 2 Loop 3 - N/A Loop $4-$ N/A	Addr	Device	Type	IptMet...	F1	Tag (line1)	Tag (Line2)	SubType	
	234.1	(MIX4)Input	Trouble Input	Class B		INX-10A \#1	Common trouble		
	234.2	(MIX4)Input	Trouble Input			INX-10A \#1	AC trouble		
	235.1	(MIX4)Output	Relay			INX-10A \#1	Signal Silence		
	235.2	(MIX4)Output	Relay			INX-10A \#1	Reserved		
	236.1	(MIX4)Input	Trouble Input	Class B		INX-10A \#1	Battery trouble		
	236.2	(MIX4)Input	Trouble Input			INX-10A \#1	Ground Fault		
	237.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 1		
	238.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 2		
	239.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 3		
	240.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 4		

Figure 43 MGC-4000 Configurator Settings - INX-10A Single Stage with Enhanced Reporting and Power Supply Output

6.6 Two Stage Addressing Options in FleX-Net ${ }^{\text {TM }}$ FX-4000

Address Assignments are done via DIP switch 2 (SW2) which is located to the left of the Main LED display board. The addresses for the functions are dependent upon the Base Address of the INX Panel.

For further information on setting the Base Address of the INX panel see Figure 13.

> Attention: Ensure that the configuration is set correctly on the INX-10A DIP switches and the Fire Panel Configuration Software.

6.6.1 Two Stage with Basic Reporting Addressing

To configure the recommended base address
Set DIP switch SW1 as: 1-1-1-0-0-1-1-1
ON-ON-ON-OFF-OFF-ON-ON-ON

To configure the INX for Two Stage with Basic Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-1-0
ON-OFF-ON-OFF
sw 2

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 22 Configuring Two Stage Functions

Function	Address	Subaddress	Recommended Device Address
Common Trouble	Base Address	1	231.1
Reserved		2	231.2
Signal Silence	Base Address + 1	1	232.1
Reserved		2	232.2
Activate NAC1, return NAC1 line status	Base Address + 2	1	233.1
Activate NAC2, return NAC2 line status	Base Address + 3	1	234.1
Activate NAC3, return NAC3 line status	Base Address + 4	1	235.1
Activate NAC4, return NAC4 line status	Base Address + 5	1	236.1
Activate NAC5, return NAC5 line status	Base Address + 6	1	237.1
Second Stage NAC1	Base Address + 7	1	238.1
Second Stage NAC2		2	238.2
Second Stage NAC3	Base Address + 8	1	239.1
Second Stage NAC4		2	239.2
Second Stage NAC5	Base Address + 9	1	240.1
Reserved		2	240.2

Notes: Table 22 represents all NACs configured as NAC circuits.
The second stage NACs must have the Signal Type in the Configurator in order to work with signal silence.

Mircom recommends always using the upper range of addresses available for the INX-10A.

If any NAC circuit is configured as a Power Supply see section 6.4.3 on page 62 for an explanation on addressing.
6.6.1.1 Software Configuration - Two Stage with Basic Reporting Addressing

Q-Job Detaiss FerNemP	Addr	1 Denice	ITpee	\mid Iomet...	\|Fi	Tog (inei)	1 Tag (ine2)	1 subTrpe
¢- .ode 1	${ }_{231.1}^{2312}$	(MxX)Inout	Troule Trout	Class ${ }^{\text {B }}$	Inc-100 \#1	Common toul		
. $\mathrm{Basel}^{\text {P/ }}$	${ }_{232.1}^{23.12}$					Reserved		
(9-Main isplay	${ }^{2322,2}$	(mxx) (mutut				Reserved		
Loop 1	${ }_{233.1}^{23.1}$	(MXx)MUOOMac	Stobe		Ns ${ }_{\text {NS }}$	NaC2		
Loop 2	${ }^{235.1}$	Mrxamu Mac	Strobe			NaC3		
Loop 3-N/A	${ }_{2}^{237.1}$	(mxa)MOOMAC	Stobe		NS INX-104* $=1$			
	${ }_{2}^{238.1}$	(Mxx) ouput			TM-100*1	NaC 12nd Stoge		
Outputzones	${ }^{239.1}$	Mixf) Ouput	Signal			NaC 3 2nd Stase		
- Node 8 CPU Status	${ }_{2}^{200.1}$	Mrx ouput	somal		TNX-10A \#1	NaC 5 2nd Stage		
mmon System Status		(MxA)Outur						

Figure 44 MGC-4000 Configurator Settings - INX-10A Two Stage with Basic Reporting

6.6.2 Two Stage Address Assignment with Enhanced Trouble Reporting

To configure the recommended base address
Set DIP switch SW1 as:

```
\[
0-1-1-0-0-1-1-1
\]
OFF-ON-ON-OFF-OFF-ON-ON-ON
```

To configure the INX for Two Stage with Enhanced Trouble Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-0-0
ON-OFF-OFF-OFF
sw2

Attention: Two Stage Enhanced reporting is mandatory to meet ULC requirements.

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 23 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting

Function	Address	Subaddress	Recommended Device Address
Common Trouble	Base Address	1	230.1
Monitor AC Trouble		2	230.2

Table 23 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting (Continued)

Function	Address	Subaddress	Recommended Device Address
Signal Silence	Base Address + 1	1	231.1
Reserved		2	231.2
Monitor Battery/Charger trouble	Base Address + 2	1	232.1
Monitor Earth Ground Fault		2	232.2
Activate NAC1, return NAC1 line status	Base Address + 3	1	233.1
Activate NAC2, return NAC2 line status	Base Address + 4	1	234.1
Activate NAC3, return NAC3 line status	Base Address + 5	1	235.1
Activate NAC4, return NAC4 line status	Base Address + 6	1	236.1
Activate NAC5, return NAC5 line status	Base Address + 7	1	237.1
Second Stage NAC1	Base Address + 8	1	238.1
Second Stage NAC2		2	238.2
Second Stage NAC3	Base Address + 9	1	239.1
Second Stage NAC4		2	239.2
Second Stage NAC5	Base Address + 10	1	240.1
Reserved		2	240.2

Notes: Table 23 represents all NACs configured as NAC circuits.
The second stage NACs must have the Signal Type in the Configurator in order to work with signal silence.

Mircom recommends always using the upper range of addresses available for the INX-10A.

If any NAC circuit is configured as a Power Supply see section 6.4.4 on page 66 for an explanation on addressing.
6.6.2.1 Software Configuration - Two Stage Address Assignment with Enhanced Trouble Reporting

Figure 45 MGC-4000 Configurator Settings - INX-10A Two Stage with Enhanced Reporting

6.6.3 Two Stage with Basic Reporting and Power Supply Output Addressing

In order to maximize the amount of addresses available, if a NAC circuit is configured as a Power Supply, the next configured NAC Circuit is assigned the address reserved for the previous Circuit.

6.6.3.1 Example Application

- NAC 5 configured as a Power Supply.
- INX-10A Common Trouble reporting address is 233.

To configure the recommended base address
Set DIP switch SW1
1-0-0-1-0-1-1-1
as:
ON-OFF-OFF-ON-OFF-ON-ON-ON
sw1

To configure the INX for Two Stage with Basic Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-1-0
ON-OFF-ON-OFF
sw2

To configure NAC 5 as a Continuous Power Supply
Set DIP switch SW4-7 and SW4-8
as:
1-0
ON-OFF
SW4

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 24 Assigning Addresses - Two Stage Application, 1 Power Supply Output

Function	Address	Subaddress	Recommended Device Address
Common Trouble	Base Address	1	233.1
Reserved		2	233.2
Signal Silence	Base Address + 1	1	234.1
Reserved		2	234.2
Activate NAC1, return NAC1 line status	Base Address + 2	1	235.1
Activate NAC2, return NAC2 line status	Base Address + 3	1	236.1
Activate NAC3, return NAC3 line status	Base Address + 4	1	237.1
Activate NAC4, return NAC4 line status	Base Address + 5	1	238.1
Second Stage NAC1	Base Address + 6	1	239.1
Second Stage NAC2		2	239.2
Second Stage NAC3	Base Address + 7	1	240.1
Second Stage NAC4		2	240.2

Notes: The second stage NACs must have the Signal Type in the Configurator in order to work with signal silence.

Mircom recommends always using the upper range of addresses available for the INX-10A.

Troubles occurring on a NAC circuit are only reported via the first stage address.
6.6.3.2 Software Configuration -Two Stage with Basic Reporting and Power Supply Output Addressing

\square Job Details: FlexNetMP	Addr	Device	Type	IptMet...	F1	Tag (Line 1)	Tag (Line2)
\square Node 1	233.1	(MIX4)Input	Trouble Input	Class B		INX-10A \#1	Common trouble
+ Base I/O	233.2	(MIX4)Input	Monitor			INX-10A \#1	Reserved
Hain Display	234.1	(MIX4)Output	Relay			INX-10A \#1	Signal Silence
\dagger - Main Display	234.2	(MIX4)Output	Relay			INX-10A \#1	Reserved
Mircom QLA: CPU 1	235.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 1
Loop 1	236.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 2
Loop 2	237.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 3
Loop 3 - N/A	238.1	(MIX4)MUO/NAC	Strobe		NS	INX-10A \#1	NAC 4
-Loop 3 - N/A	239.1	(MIX4)Output	Signal			INX-10A \#1	NAC 12 2nd Stage
-...Loop 4 - N/A	239.2	(MIX4)Output	Signal			INX-10A \#1	NAC 2 2nd Stage
- \quad Input Zones	240.1	(MIX4)Output	Signal			INX-10A \#1	NAC 3 2nd Stage
Output Zones	240.2	(MIX4)Output	Signal			INX-10A \#1	NAC 4 2nd Stage
Node \& CPU Status							
. Common System Status							

Figure 46 MGC-4000 Configurator Settings - INX-10A Two Stage with Power Supply Output

6.6.4 Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing

In order to maximize the amount of addresses available, if a NAC circuit is configured as a Power Supply, the next configured NAC Circuit is assigned the address reserved for the previous Circuit.

Attention: Two Stage Enhanced reporting is mandatory to meet ULC requirements.

6.6.4.1 Example Application

- NAC 5 configured as a Power Supply.
- INX-10A Common Trouble reporting address is 232.

To configure the recommended base address
Set DIP switch SW1

$$
0-0-0-1-0-1-1-1
$$

as:
OFF-OFF-OFF-ON-OFF-ON-ON-ON

To configure the INX for Two Stage with Enhanced Trouble Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-0-0
ON-OFF-OFF-OFF
sw2

To configure NAC 5 as a Continuous Power Supply

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 25 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing

Function	Address	Subaddress	Recommended Device Address
Common Trouble	Base Address	1	232.1
Monitor AC trouble		2	232.2
Signal Silence	Base Address + 1	1	233.1
Reserved		2	233.2
Monitor Battery/Charger trouble	Base Address + 2	1	234.1
Monitor Earth Ground Fault		2	234.2
Activate NAC1, return NAC1 line status	Base Address + 3	1	235.1
Activate NAC2, return NAC2 line status	Base Address + 4	1	236.1
Activate NAC3, return NAC3 line status	Base Address +5	1	237.1
Activate NAC4, return NAC4 line status	Base Address + 6	1	238.1
Second Stage NAC1	Base Address + 7	1	239.1
Second Stage NAC2		2	239.2
Second Stage NAC3	Base Address + 8	1	240.1
Second Stage NAC4		2	240.2

Notes: The second stage NACs must have the Signal Type in the Configurator in order to work with signal silence.

Mircom recommends always using the upper range of addresses available for the INX-10A.

Troubles occurring on a NAC circuit are only reported via the first stage address.
6.6.4.2 Software Configuration - Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing

Figure 47 MGC-4000 Configurator Settings - INX-10A Two Stage with Enhanced Reporting and Power Supply Addressing

6.7 Single Stage Configuration in FX-400/401

Attention: To configure the INX-10A for FX-400/401, DIP switch SW2-1 and SW3-2

 must be set to $O N$. See section 6.2.3 on page 40 .
6.7.1 Single Stage with Basic Reporting Addressing

To configure the recommended base address

Set DIP switch SW1

$$
0-1-0-1-0-1-1-1
$$

OFF-ON-OFF-ON-OFF-ON-ON-ON

To configure the INX for Single Stage with Basic Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-1-1
ON-OFF-ON-ON
sw2

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 26 Configuring Single Stage Functions

Function	Address	Recommended Device Address
Common Trouble	Base Address	234
Signal Silence	Base Address + 1	235
Activate NAC1, return NAC1 line status	Base Address + 2	236
Activate NAC2, return NAC2 line status	Base Address + 3	237
Activate NAC3, return NAC3 line status	Base Address + 4	238
Activate NAC4, return NAC4 line status	Base Address + 5	239
Activate NAC5, return NAC5 line status	Base Address + 6	240

Notes: Table 26 represents all NACs configured as NAC circuits.
Mircom recommends always using the upper range of addresses available for the INX-10A.

If any NAC circuit is configured as a Power Supply, see section 6.3.3 on page 49 for an explanation on addressing.

6.7.1.1 Software Configuration - Single Stage with Basic Reporting Addressing

Figure 48 MGC-400 Configurator Settings - INX-10A Single Stage with Basic Reporting

6.7.2 Single Stage with Enhanced Reporting Addressing

To configure the recommended base address

Set DIP switch SW1

as:

$$
1-1-1-0-0-1-1-1
$$

ON-ON-ON-OFF-OFF-ON-ON-ON
sW1

To configure the INX for Single Stage with Enhanced Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-0-1
ON-OFF-OFF-ON

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 27 Configuring Single Stage Functions

Function	Address	Recommended Device Address
Common Trouble	Base Address	231
Monitor Signal Silence	Base Address + 1	232
AC Trouble	Base Address + 2	233
Monitor Battery/Charger trouble	Base Address + 3	234
Monitor Earth Ground Fault	Base Address + 4	235
Activate NAC1, return NAC1 line status	Base Address + 5	236
Activate NAC2, return NAC2 line status	Base Address + 6	237
Activate NAC3, return NAC3 line status	Base Address + 7	238
Activate NAC4, return NAC4 line status	Base Address + 8	239
Activate NAC5, return NAC5 line status	Base Address + 9	240

- Notes: Table 27 represents all NACs configured as NAC circuits.

Mircom recommends always using the upper range of addresses available for the INX-10A.

If any NAC circuit is configured as a Power Supply, see section 6.3.3 on page 49 for an explanation on addressing.

6.7.2.1 Software Configuration - Single Stage with Enhanced Reporting Addressing

■ Job Details: FX-400	Addr	\| Lp Addr	CkiNo	Device	Type	F1 F	F3	F4	Sens	Tag (Line1)	Tag (Line2)
\square Base	231	231	0	(M\|X-404x) Dual InputA	Trouble Input		CA			Common Trouble	
	232	232	4	(MIX-4045)Dual Relay	Relay			NF		Signal Silence	
Loop 0 (Hardwire؛	233	233	1	(MIX-404x) Dual InputA	Trouble Input		CA			AC Trouble	
Loop 1	234	234	2	(MIX-404x) Dual InputA	Trouble Input		CA			Battery Trouble	
- Bypass Groups	235	235	3	(M1X-404x) Dual Inputé	Trouble Input		CA			Ground Fault	
円-Main Display	236	236	5	(MIX-4046) Sup Dutput Module	Signal			NF		NAC1	
Dialer	237	237	6	(MIX-4046)Sup Output Module	Signal			NF		NAC2	
	238	238	7	(MIX-4046) Sup Output Module	Signal			NF		NAC3	
- Common System Status	239	239	8	[M\|X-4046)Sup Output Module	Signal			NF		NAC4	
- Input Summary	240	240	9	(MIX-4046) Sup Output Module	Signal			NF		NAC5	
Output Summary											

Figure 49 MGC-400 Configurator Settings - INX-10A Single Stage with Enhanced Reporting

6.7.3 Single Stage with Basic Reporting and Power Supply Output Addressing

In order to maximize the amount of addresses available, if a NAC circuit is configured as a Power Supply, the next configured NAC Circuit is assigned the address reserved for the previous Circuit.

6.7.3.1 Example Application

- NAC 5 configured as a Power Supply.
- INX-10A Common Trouble reporting address is 235.

To configure the recommended base address

Set DIP switch SW1

as:

$$
1-1-0-1-0-1-1-1
$$

ON-ON-OFF-ON-OFF-ON-ON-ON

SW1

To configure the INX for Single Stage with Basic Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-1-1
ON-OFF-ON-ON
sW2

To configure NAC 5 as a Continuous Power Supply

Set DIP switch SW4-7 and SW4-8

 as:1-0
ON-OFF

sw4 | 1 | 2 | 3 | 4 | 5 | 678 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 28 Assigning Addresses - Single Stage with Basic Reporting and Power Supply Output

Function	Address	Recommended Device Address
Common Trouble	Base Address	235
Signal Silence	Base Address + 1	236
Activate NAC1, return NAC1 line status	Base Address + 2	237
Activate NAC2, return NAC2 line status	Base Address + 3	238
Activate NAC3, return NAC3 line status	Base Address + 4	239
Activate NAC4, return NAC4 line status	Base Address +5	240

Notes: Mircom recommends always using the upper range of addresses available for the INX-10A.

Mircom recommends always using the upper range of NACs (NAC5 then NAC4 then NAC3 etc.) when configuring as a Power Supply.
6.7.3.2 Software Configuration - Single Stage with Basic Reporting and Power Supply Output Addressing

■Job Details: FX-400	Addr	\| Lp Addr	CkiNo	Device	Type	F1 \|	F3	F4	Sens	\| Tag (Line1)	Tag (Line2)
f- Base I/O	235	235	0	(M1X-404x) Dual InputA.	Trouble Input		CA			Common Trouble	
	236	236	4	(M\|X-4045)Dual Relay	Relay			NF		Signal Silence	
O (Hardwire	237	237	5	(MIX-4046)Sup Output Module	Signal			NF		NAC1	
Loop 1	238	238	6	(MIX-4046)Sup Output Module	Signal			NF		NAC2	
- Bypass Groups	239	239	7	(MIX-4046) Sup Dutput Module	Signal			NF		NAC3	
円-Main Display	240	240	8	(MIX-4046)Sup Output Module	Signal			NF		NAC4	
- Dialer											
- Common System Status											
- Input Summary											
Output Summary											

Figure 50 MGC-400 Configurator Settings - INX-10A Single Stage with Basic Reporting and Power Supply Output

6.7.4 Single Stage with Enhanced Reporting and Power Supply Output Addressing

In order to maximize the amount of addresses available, if a NAC circuit is configured as a Power Supply, the next configured NAC Circuit is assigned the address reserved for the previous Circuit.

6.7.4.1 Example Application

- NAC 5 configured as a Power Supply.
- INX-10A Common Trouble reporting address is 232.

To configure the recommended base address
Set DIP switch SW1
as:

$$
\begin{aligned}
& 0-0-0-1-0-1-1-1 \\
& \text { OFF-OFF-OFF-ON-OFF-ON-ON-ON }
\end{aligned}
$$

sw1

To configure the INX for Single Stage with Enhanced Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-0-1
ON-OFF-OFF-ON
sw2

To configure NAC 5 as a Continuous Power Supply
Set DIP switch SW4-7 and SW4-8
1-0
as:
sw4

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 29 Assigning Addresses - Single Stage Application, 1 Power Supply Output

Function	Address	Recommended Device Address
Common Trouble	Base Address	232
Signal Silence	Base Address + 1	233
Monitor AC Trouble	Base Address + 2	234
Monitor Battery/Charger trouble	Base Address + 3	235
Monitor Earth Ground Fault	Base Address + 4	236
Activate NAC1, return NAC1 line status	Base Address + 5	237
Activate NAC2, return NAC2 line status	Base Address + 6	238
Activate NAC3, return NAC3 line status	Base Address + 7	249
Activate NAC4, return NAC4 line status	Base Address + 8	240

Notes: Mircom recommends always using the upper range of addresses available for the INX-10A.

Mircom recommends always using the upper range of NACs (NAC5 then NAC4 then NAC3 etc.) when configuring as a Power Supply.

6.7.4.2 Software Configuration - Single Stage with Enhanced Reporting and Power Supply Output Addressing

Figure 51 MGC-400 Configurator Settings - INX-10A Single Stage with Enhanced Reporting and Power Supply Output

6.8 Two Stage Addressing Options in FX-401

Attention: To configure the INX-10A for FX-400/401, DIP switch SW2-1 and SW3-2 must be set to $O N$. See section 6.2.3 on page 40 .

Address Assignments are done via DIP switch 2 (SW2) which is located to the left of the Main LED display board. The addresses for the functions are dependent upon the Base Address of the INX Panel.

For further information on setting the Base Address of the INX panel see Figure 13.

Attention: Ensure that the configuration is set correctly on the INX-10A DIP switches and the Fire Panel Configuration Software.

6.8.1 Two Stage with Basic Reporting Addressing

To configure the recommended base address
Set DIP switch SW1 as: 1-0-1-0-0-1-1-1
ON-OFF-ON-OFF-OFF-ON-ON-ON
sw1

To configure the INX for Two Stage with Basic Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-1-0
ON-OFF-ON-OFF

SW2

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 30 Configuring Two Stage Functions

Function	Address	Recommended Device Address
Common Trouble	Base Address	229
Signal Silence	Base Address + 1	230
Activate NAC1, return NAC1 line status	Base Address + 2	231
Activate NAC2, return NAC2 line status	Base Address + 3	232
Activate NAC3, return NAC3 line status	Base Address + 4	233
Activate NAC4, return NAC4 line status	Base Address + 5	234

Table 30 Configuring Two Stage Functions (Continued)

Function	Address	Recommended Device Address
Activate NAC5, return NAC5 line status	Base Address + 6	235
Second Stage NAC1	Base Address + 7	236
Second Stage NAC2	Base Address + 8	237
Second Stage NAC3	Base Address + 9	248
Second Stage NAC4	Base Address + 10	239
Second Stage NAC5	Base Address + 11	240

Notes: Table 30 represents all NACs configured as NAC circuits.
The second stage NACs must be correlated to the Fire Drill and Total Evacuation statuses. They must have the Signal Type in the Configurator in order to work with signal silence.
Mircom recommends always using the upper range of addresses available for the INX-10A.

If any NAC circuit is configured as a Power Supply see section 6.4.3 on page 62 for an explanation on addressing.
6.8.1.1 Software Configuration - Two Stage with Basic Reporting Addressing

Addr	1 Lp Addr	CkiNo	Device	Type	F1 \| F3	F4 \| Sens	Tag (Line 1)	Tag (Line2)
229	229	0	(M\|X-404x) Dual Inputa	Trouble Input	CA		Common Trouble	
230	230	4	(MIX-4045)Dual Relay	Relay		NF	Signal Silence	
231	231	5	(M\|X-4046)Sup Output Module	Signal		NF	NAC1	
232	232	6	(M\|X-4046)Sup Output Module	Signal		NF	NAC2	
233	233	7	(M1X-4046)Sup Output Module	Signal		NF	NAC3	
234	234	8	(M1X-4046)Sup Output Module	Signal		NF	NAC4	
235	235	9	(M\|X-4046)Sup Output Module	Signal		NF	NAC5	
236	236	10	(MIX-4045)Dual Relay	Signal		NF	NAC1 2nd Stage	
237	237	11	(MIX-4045)Dual Relay	Signal		NF	NAC2 2nd Stage	
238	238	12	(MIX-4045)Dual Relay	Signal		NF	NAC3 2nd Stage	
239	239	13	[MIX-4045)Dual Relay	Signal		NF	NAC4 2nd Stage	
240	240	14	(MIX-4045)Dual Relay	Signal		NF	NAC5 2nd Stage	

Figure 52 MGC-400 Configurator Settings - INX-10A Two Stage with Basic Reporting

6.8.2 Two Stage Address Assignment with Enhanced Trouble Reporting

To configure the recommended base address

Set DIP switch SW1

as:

$$
0-1-0-0-0-1-1-1
$$

OFF-ON-OFF-OFF-OFF-ON-ON-ON

To configure the INX for Two Stage with Enhanced Trouble Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-0-0

Attention: Two Stage Enhanced reporting is mandatory to meet ULC requirements.

Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 31 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting

Function	Address	Recommended Device Address
Common Trouble	Base Address	226
Signal Silence	Base Address + 1	227
Monitor AC Trouble	Base Address + 2	228
Monitor Battery/Charger trouble	Base Address + 3	229
Monitor Earth Ground Fault	Base Address + 4	230
Activate NAC1, return NAC1 line status	Base Address + 5	231
Activate NAC2, return NAC2 line status	Base Address + 6	232
Activate NAC3, return NAC3 line status	Base Address + 7	233
Activate NAC4, return NAC4 line status	Base Address + 8	234
Activate NAC5, return NAC5 line status	Base Address + 9	235
Second Stage NAC1	Base Address + 10	236
Second Stage NAC2	Base Address + 11	237
Second Stage NAC3	Base Address + 12	238
Second Stage NAC4	Base Address + 13	239
Second Stage NAC5	Base Address + 14	240

Notes: Table 31 represents all NACs configured as NAC circuits.
The second stage NACs must be correlated to the Fire Drill and Total Evacuation statuses. They must have the Signal Type in the Configurator in order to work with signal silence.

Mircom recommends always using the upper range of addresses available for the INX-10A.

If any NAC circuit is configured as a Power Supply see section 6.4.4 on page 66 for an explanation on addressing.
6.8.2.1 Software Configuration - Two Stage Address Assignment with Enhanced Trouble Reporting

[Job Details: FX-401	Addr	LpAddr	CkNo	Device	Type	F1	F3	F4	Sens	Tag (Line1)	Tag (Line2)	Delay
- Base I/O	122	226	0	(M1X-404x) Dual Inputa	Trouble Input		CA			Common Trouble		
- ${ }^{\text {a }}$	227	227	4	(MIX-4045)Dual Relay	Relay			NF		Signal Silence		0
Loop 0 (Hardwirer	228	228	1	(MIX-404x) Dual Inputa	Trouble Input		CA			AC Trouble		
Loop 1	229	229	2	(MIX-404x) Dual InputA	Trouble Input		ca			Battery Trouble		
Bypass Groups	230	230	3	(M1X-404x) Dual Inputa	Trouble Input		CA			Ground Fault		
†-Main Display	231	231	5	(MIX-4046)Sup Output Module	Signal			NF		NAC1		0
	232	232	6	(MIX-4046)Sup Output Module	Signal			NF		NAC2		0
- Dialer	233	233	7	(MIX-4046)Sup Output Module	Signal			NF		NAC3		0
- Common System Status	234	234	8	(MIX-4046)Sup Output Module	Signal			NF		NAC4		0
- Input Summary	235	235	9	(MIX-4046)Sup Output Module	Signal			NF		NAC5		0
Output Summary	236	236	10	(MIX-4045)Dual Relay	Signal			NF		NAC1 2nd Stage		0
Output Sumary	237	237	11	(MIX-4045)Dual Relay	Signal			NF		NAC2 2nd Stage		0
	238	238	12	(MIX-4045)Dual Relay	Signal			NF		NAC3 2nd Stage		0
	239	239	13	(MIX-4045)Dual Relay	Signal			NF		NAC4 2nd Stage		0
	240	240	14	(MIX-4045)Dual Relay	Signal			NF		NAC5 2nd Stage		0

Figure 53 MGC-400 Configurator Settings - INX-10A Two Stage with Enhanced Reporting

6.8.3 Two Stage with Basic Reporting and Power Supply Output Addressing

In order to maximize the amount of addresses available, if a NAC circuit is configured as a Power Supply, the next configured NAC Circuit is assigned the address reserved for the previous Circuit.

6.8.3.1 Example Application

- NAC 5 configured as a Power Supply.
- INX-10A Common Trouble reporting address is 231 .

To configure the recommended base address
Set DIP switch SW1

To configure the INX for Two Stage with Basic Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-1-0
ON-OFF-ON-OFF

SW2

To configure NAC 5 as a Continuous Power Supply

Set DIP switch SW4-7 and SW4-8

 as:```
1-0
```

ON-OFF
sw4


Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 32 Assigning Addresses - Two Stage Application, 1 Power Supply Output

| Function | Address | Recommended <br> Device Address |
| :--- | :--- | :---: |
| Common Trouble | Base Address | 231 |
| Signal Silence | Base Address + 1 | 232 |
| Activate NAC1, return NAC1 line status | Base Address + 2 | 233 |
| Activate NAC2, return NAC2 line status | Base Address + 3 | 234 |
| Activate NAC3, return NAC3 line status | Base Address + 4 | 235 |
| Activate NAC4, return NAC4 line status | Base Address + 5 | 236 |
| Second Stage NAC1 | Base Address + 6 | 237 |
| Second Stage NAC2 | Base Address + 7 | 238 |
| Second Stage NAC3 | Base Address + 8 | 239 |
| Second Stage NAC4 | Base Address + 9 | 240 |

Notes: The second stage NACs must be correlated to the Fire Drill and Total Evacuation statuses. They must have the Signal Type in the Configurator in order to work with signal silence.
Mircom recommends always using the upper range of addresses available for the INX-10A.

Troubles occurring on a NAC circuit are only reported via the first stage address.

### 6.8.3.2 Software Configuration -Two Stage with Basic Reporting and Power Supply Output Addressing

| ■Job Details: FX-400 | Addr | 1 LpAddr | CkiNo | Device | Type | F1 \| | F3 | F4 | Sens | \| Tag (Line1) | Tag (Line2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - Base I/O | 231 | 231 | 0 | (M1X-404x)Dual InputA. | Trouble Input |  | CA |  |  | Common Trouble |  |
|  | 232 | 232 | 4 | (M1X-4045) Dual Relay | Relay |  |  | NF |  | Signal Silence |  |
| -Loop 0 (Hardwires | 233 | 233 | 5 | (M\|X-4046)Sup Output Module | Signal |  |  | NF |  | NAC1 |  |
| Loop 1 | 234 | 234 | 6 | (M\|X-4046)Sup Output Module | Signal |  |  | NF |  | NAC2 |  |
| - Bypass Groups | 235 | 235 | 7 | (M\|X-4046)Sup Output Module | Signal |  |  | NF |  | NAC3 |  |
| + Main Display | 236 | 236 | 8 | (M\|X-4046)Sup Output Module | Signal |  |  | NF |  | NAC4 |  |
|  | 237 | 237 | 9 | (MIX-4045)Dual Relay | Signal |  |  | NF |  | NAC1 2nd Stage |  |
| - Dialer | 238 | 238 | 10 | (M1X-4045)Dual Relay | Signal |  |  | NF |  | NAC2 2nd Stage |  |
| - Common System Status | 239 | 239 | 11 | (MIX-4045)Dual Relay | Signal |  |  | NF |  | NAC3 2nd Stage |  |
| - Input Summary | 240 | 240 | 12 | (MIX-4045)Dual Relay | Signal |  |  | NF |  | NAC4 2nd Stage |  |
| Output Summary |  |  |  |  |  |  |  |  |  |  |  |

Figure 54 MGC-400 Configurator Settings - INX-10A Two Stage with Power Supply Output

### 6.8.4 Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing

In order to maximize the amount of addresses available, if a NAC circuit is configured as a Power Supply, the next configured NAC Circuit is assigned the address reserved for the previous Circuit.

Attention: Two Stage Enhanced reporting is mandatory to meet ULC requirements.

### 6.8.4.1 Example Application

- NAC 5 configured as a Power Supply.
- INX-10A Common Trouble reporting address is 228.

To configure the recommended base address
Set DIP switch SW1
as:
$0-0-1-0-0-1-1-1$
OFF-OFF-OFF-ON-OFF-ON-ON-ON
SW1


To configure the INX for Two Stage with Enhanced Trouble Reporting in a system with MGC addressable devices

Set DIP switch SW2-1 to SW2-4 as: 1-0-0-0
ON-OFF-OFF-OFF
sw 2


To configure NAC 5 as a Continuous Power Supply
Set DIP switch SW4-7 and SW4-8
as:

1-0
ON-OFF

SW4


Attention: If NACs are configured the Evacuation Rate must be set on SW4 4-6. For more information see section 6.2.4 on page 41.

Table 33 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing

| Function | Address | Recommended <br> Device Address |
| :--- | :--- | :---: |
| Common Trouble | Base Address | 228 |
| Signal Silence | Base Address + 1 | 229 |
| Monitor AC trouble | Base Address + 2 | 230 |
| Monitor Battery/Charger trouble | Base Address + 3 | 231 |
| Monitor Earth Ground Fault | Base Address + 4 | 232 |
| Activate NAC1, return NAC1 line status | Base Address + 5 | 233 |
| Activate NAC2, return NAC2 line status | Base Address + 6 | 234 |
| Activate NAC3, return NAC3 line status | Base Address + 7 | 235 |
| Activate NAC4, return NAC4 line status | Base Address + 8 | 236 |
| Second Stage NAC1 | Base Address + 9 | 237 |
| Second Stage NAC2 | Base Address + 10 | 238 |

Table 33 Configuring Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing

| Function | Address | Recommended <br> Device Address |
| :--- | :--- | :---: |
| Second Stage NAC3 | Base Address +11 | 239 |
| Second Stage NAC4 | Base Address +12 | 240 |

Notes: The second stage NACs must be correlated to the Fire Drill and Total Evacuation statuses. They must have the Signal Type in the Configurator in order to work with signal silence.

Mircom recommends always using the upper range of addresses available for the INX-10A.

Troubles occurring on a NAC circuit are only reported via the first stage address.

### 6.8.4.2 Software Configuration - Two Stage Address Assignment with Enhanced Trouble Reporting and Power Supply Addressing

| $\square$ Job Details: FX-401 | Addr | 1 Lp Addr | CkHNo | Device | Type | F1 \| F3 | F4 | Sens | Tag (Line1) | Tag (Line2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ¢ Base I/O | 228 | 228 | 0 | (MIX-404x) Dual InputA. | Trouble Input | CA |  |  | Common Trouble |  |
| - Base IVO | 229 | 229 | 4 | (M\|X-4045) Dual Relay | Relay |  | NF |  | Signal Silence |  |
|  | 230 | 230 | 1 | (M1X-404x) Dual InputA | Trouble Input | cas |  |  | AC Trouble |  |
| - Loop 1 | 231 | 231 | 2 | (M\|X-404x) Dual InputA | Trouble Input | CA |  |  | Battery Trouble |  |
| Bypass Groups | 232 | 232 | 3 | (M1X-404x) Dual InputA | Trouble Input | cA |  |  | Ground Fault |  |
| 円-Main Display | 233 | 233 | 5 | (MIX-4046)Sup Output Module | Signal |  | NF |  | $\mathrm{NAC1}$ |  |
|  | 234 | 234 | 6 | (MIX-4046)Sup Output Module | Signal |  | NF |  | NAC2 |  |
|  | 235 | 235 | 7 | (MIX-4046)Sup Output Module | Signal |  | NF |  | NAC3 |  |
| - Common System Status | 236 | 236 | 8 | (MIX-4046)Sup Output Module | Signal |  | NF |  | NAC4 |  |
| - Input Summary | 237 | 237 | 9 | (MIX-4045)Dual Relay | Signal |  | NF |  | NAC1 2nd Stage |  |
| Output Summary | 238 | 238 | 10 | (M1X-4045)Dual Relay | Signal |  | NF |  | NAC2 2nd Stage |  |
|  | 239 | 239 | 11 | (M\|X-4045)Dual Relay | Signal |  | NF |  | NAC3 2nd Stage |  |
|  | 240 | 240 | 12 | (M\|X-4045) Dual Relay | Signal |  | NF |  | NAC4 2nd Stage |  |

Figure 55 MGC-400 Configurator Settings - INX-10A Two Stage with Enhanced Reporting and Power Supply Addressing

### 6.9 Independent Mode Configuration Options

NAC circuits on the INX-10A can be configured to drive both Signals and Strobes.

### 6.9.1 NACs 1 and 2 Configured as Signals

To configure NAC1 and NAC2 to drive signals set SW3-7 to 0 (OFF).
Configure the Strobe Manufacturer and Signal Rate by setting SW4-4, SW4-5, SW4-6, SW5-1 SW5-2 and SW5-3 as described in Table 34.

Notes: Using Independent Mode in a Two Stage Application
When driving Signals and Strobes in a Two Stage Application configure the Alert Rate by setting SW4-1, SW4-2 and SW4-3 as follows:

100 - Uses Strobe Manufacturer Sync Rate

010 - Continuous


110-0.5s ON, 2.5s OFF, Repeat (20 PPM as in FA-1000 or FX-2000)


001-20 PPM, 50\% Duty Cycle


Table 34 Independent Mode DIP Switch Settings - NAC1 and NAC2 configured as Signals

| NAC3 NAC4 and NAC5 | NAC1 and NAC2 | CONFIGURE SWITCHES AS SHOWN |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strobe Manufacturer (SW5 1-3) | Signal Rate <br> (SW4 4-6) | sW3 | SW4 | SW5 |
| Mircom/Amseco | Continuous |  |  |  |
| Mircom/Amseco | Temporal |  |  |  |
| Mircom/Amseco | March Time |  |  |  |
| Mircom/Amseco | California |  |  |  |
| Mircom/Amseco | 120 PPM, 50\% Duty Cycle |  |  |  |
| System Sensor | Continuous |  |  |  |

Table 34 Independent Mode DIP Switch Settings - NAC1 and NAC2 configured as Signals (Continued)

| NAC3 NAC4 and NAC5 | NAC1 and NAC2 | CONFIGURE SWITCHES AS SHOWN |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strobe Manufacturer (SW5 1-3) | Signal Rate (SW4 4-6) | SW3 | SW4 | SW5 |
| System Sensor | Temporal |  |  |  |
| System Sensor | March Time |  |  |  |
| System Sensor | California |  |  |  |
| System Sensor | 120 PPM, 50\% Duty Cycle |  |  |  |
| Secutron/Gentex | Continuous |  |  |  |
| Secutron/Gentex | Temporal |  |  |  |
| Secutron/Gentex | March Time |  |  |  |
| Secutron/Gentex | California |  |  |  |
| Secutron/Gentex | 120 PPM, 50\% Duty Cycle |  |  |  |
| Wheelock | Continuous |  |  |  |
| Wheelock | Temporal |  |  |  |
| Wheelock | March Time |  |  |  |
| Wheelock | California |  |  |  |
| Wheelock | 120 PPM, 50\% Duty Cycle |  |  |  |

### 6.9.2 NAC1, NAC2 and NAC3 Configured as Signals

To configure NAC1, NAC2 and NAC3 to drive signals set SW3-7 to 1 (ON).
Configure the Strobe Manufacturer and Signal Rate by setting SW4-4, SW4-5, SW4-6, SW5-1 SW5-2 and SW5-3 as described in Table 35.

Notes: Using Independent Mode in a Two Stage Application
When driving Signals and Strobes in a Two Stage Application configure the Alert Rate by setting SW4-1, SW4-2 and SW4-3 as follows:

100 - Uses Strobe Manufacturer Sync Rate

010 - Continuous


110-0.5s ON, 2.5s OFF, Repeat (20 PPM as in FA-1000 or FX-2000)


001-20 PPM, 50\% Duty Cycle


Table 35 Independent Mode DIP Switch Settings - NAC1, NAC2 and NAC3 configured as Signals

| NAC4 and NAC5 | NAC1, NAC2 and NAC3 | CONFIGURE SWITCHES AS SHOWN |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strobe Manufacturer (SW5 1-3) | Signal Rate (SW4 4-6) | SW3 | SW4 | SW5 |
| Mircom/Amseco | Continuous |  |  |  |
| Mircom/Amseco | Temporal |  |  |  |
| Mircom/Amseco | March Time |  |  |  |
| Mircom/Amseco | California |  |  |  |
| Mircom/Amseco | 120 PPM, 50\% Duty Cycle |  |  |  |
| System Sensor | Continuous |  |  |  |
| System Sensor | Temporal |  |  |  |

Table 35 Independent Mode DIP Switch Settings - NAC1, NAC2 and NAC3 configured as Signals (Continued)

| NAC4 and NAC5 | NAC1, NAC2 and NAC3 | CONFIGURE SWITCHES AS SHOWN |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strobe Manufacturer (SW5 1-3) | Signal Rate (SW4 4-6) | SW3 | SW4 | SW5 |
| System Sensor | March Time |  |  |  |
| System Sensor | California |  |  |  |
| System Sensor | 120 PPM, 50\% Duty Cycle |  |  |  |
| Secutron/Gentex | Continuous |  |  |  |
| Secutron/Gentex | Temporal |  |  |  |
| Secutron/Gentex | March Time |  |  |  |
| Secutron/Gentex | California |  |  |  |
| Secutron/Gentex | 120 PPM, 50\% Duty Cycle |  | "abutup |  |
| Wheelock | Continuous |  |  |  |
| Wheelock | Temporal |  |  |  |
| Wheelock | March Time |  |  |  |
| Wheelock | California |  |  |  |
| Wheelock | 120 PPM, 50\% Duty Cycle |  |  |  |

### 7.0 Wiring

This chapter describes the proper field wiring for the INX-10A.

## This chapter explains

- Maximum wiring distances
- Wiring Terminal Connections
- Wiring Power Supply Connections


### 7.1 Wiring Tables

Table 36 Wiring Table for Input Circuits

| Wire Gauge | Maximum Wiring Run to Last Device (ELR) |  |
| :---: | :---: | :---: |
| (AWG) | $\mathbf{f t}$ | $\mathbf{m}$ |
| 22 | 2990 | 910 |
| 20 | 4760 | 1450 |
| 18 | 7560 | 2300 |
| 16 | 12000 | 3600 |
| 14 | 19000 | 5800 |
| 12 | 30400 | 9200 |

Note: Maximum Loop Resistance Should Not Exceed 100 Ohms.

Table 37 Wiring Table for NAC and Auxiliary Power Circuits

| TOTAL SIGNAL LOAD | MAXIMUM WIRING RUN TO LAST DEVICE (ELR) |  |  |  |  |  |  |  | MAX. LOOP RESISTANCE <br> Ohms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 18AWG |  | 16AWG |  | 14AWG |  | 12AWG |  |  |
| Amperes | ft | m | ft | m | ft | m | ft | m |  |
| 0.06 | 2350 | 716 | 3750 | 1143 | 6000 | 1829 | 9500 | 2895 | 30 |
| 0.12 | 1180 | 360 | 1850 | 567 | 3000 | 915 | 4720 | 1438 | 15 |
| 0.30 | 470 | 143 | 750 | 229 | 1200 | 366 | 1900 | 579 | 6 |
| 0.60 | 235 | 71 | 375 | 114 | 600 | 183 | 950 | 289 | 3 |
| 0.90 | 156 | 47 | 250 | 76 | 400 | 122 | 630 | 192 | 2 |
| 1.20 | 118 | 36 | 185 | 56 | 300 | 91 | 470 | 143 | 1.5 |
| 1.50 | 94 | 29 | 150 | 46 | 240 | 73 | 380 | 115 | 1.2 |
| 1.70 | 78 | 24 | 125 | 38 | 200 | 61 | 315 | 96 | 1.0 |
| 2.0 | 70 | 21 | 112 | 34 | 178 | 54 | 285 | 86 | 0.9 |
| 2.25 | 62 | 19 | 100 | 30 | 158 | 48 | 250 | 76 | 0.8 |
| 2.50 | 56 | 17 | 90 | 27 | 142 | 43 | 230 | 70 | 0.72 |

$i$
Notes: Main Board NAC Circuits are rated for 2.5 Amperes each.
Maximum Voltage Drop Should Not Exceed 1.8 Volts.

### 7.2 Main Board Terminal Connections

Wire devices to terminals as shown below. See 7.1 Wiring Tables on page 102, Table 37 Wiring Table for NAC and Auxiliary Power Circuits on page 102 and 8.0 Appendix A Specifications and Features - for more information.


Figure 56 Main Board Terminal Blocks

> Attention: DO NOT exceed power supply ratings: Total current including Main Chassis, AUX, and NAC circuits is 10A max.
> Ground Fault Detection is required at all times. INX Ground fault detection can only be disabled IF it is interfering the FACPs Ground Fault Detection operation AND the FACP is used to manage the Ground Fault Detection.
$i$
Notes: The Terminal Blocks are depluggable for ease of wiring.

All power limited circuits must use type FPL, FPLR, or FPLP power limited cable.

### 7.2.1 SLC Loop Wiring - Class B

FX-2000
ADDRESSABLE LOOP CONNECTIONS


Figure 57 SLC Loop Wiring - Class B

### 7.2.2 SLC Loop Wiring - Class A

FX-2000
ADDRESSABLE LOOP CONNECTIONS


Figure 58 SLC Loop Wiring-Class A

### 7.2.3 Synchronized Input from FACP Wiring - Class B

SYNCH SIGNAL FROM FACP


Figure 59 Synchronized Input from FACP Wiring - Class B

Attention: DO NOT USE AN SLC LOOP IN THIS APPLICATION.

### 7.2.4 Synchronized Input from FACP Wiring- Class A

SYNCH SIGNAL FROM FACP
NAC CIRCUIT FROM FACP


Figure 60 Synchronized Input from FACP Wiring - Class A

Attention: DO NOT USE AN SLC LOOP IN THIS APPLICATION.

### 7.2.5 Synchronized Input from INX-10A Wiring - Class B Single Follower

 SYNCH SIGNAL FROM INX-10A CLASS B ONLY

Figure 61 Synchronized Input from INX-10A Wiring - Class B Single Follower

Attention: CLASS B WIRING ONLY
7.2.6 Synchronized Input from INX-10A Single Stage Wiring - Class B Multiple Followers

## SYNCH SIGNAL FROM INX-10A CLASS B ONLY



Figure 62 Synchronized Input from INX-10A Wiring - Class B Multiple Followers

Attention: SYCNHRONIZING SIGNALS FROM THE INX-10A CAN USE CLASS B WIRING ONLY
MIRCOM RECOMMENDED SETUP FOR MULTIPLE FOLLOWERS

### 7.2.7 Synchronized Input from INX-10A Two Stage Wiring - Class B Multiple Followers

 SYNCH SIGNAL FROM INX-10A CLASS B ONLY

Figure 63 Synchronized Input from INX-10A Wiring - Class B Multiple Followers

Attention: SYNCHRONIZING SIGNALS FROM THE INX-10A CAN USE CLASS B WIRING ONLY

MIRCOM RECOMMENDED SETUP FOR MULTIPLE FOLLOWERS

### 7.2.8 Relay Contact Activation from FACP - Single Stage RELAY CONTACT ACTIVATION FROM FACP - SINGLE STAGE

FACP


To FACP input configured for

Alarm Relay

Aux Power trouble


Figure 64 Relay Contact Activation from FACP - Single Stage

## Attention: DO NOT USE AN SLC LOOP IN THIS APPLICATION.

Disable the addressable loop by setting DIP switch SW1 to all 0 (OFF).

Table 38 Difference between features provided by SLC Interface and Contact Interface

| Feature Description | SLC Interface | Contact Interface |
| :--- | :--- | :--- |
| NAC by NAC activation | Yes | No |
| NAC circuit trouble reporting | Yes | No |
| Common trouble reporting | Yes | Yes |
| Enhanced trouble reporting | Yes | No |

### 7.2.9 Relay Contact Activation from FACP - Two Stage

RELAY CONTACT ACTIVATION FROM FACP - TWO STAGE
FACP
Second Stage Alarm Relay

FACP
First Stage
Alarm
Relay


Figure 65 Relay Contact Activation from FACP - Two Stage

Attention: DO NOT USE AN SLC LOOP IN THIS APPLICATION.
Disable the addressable loop by setting DIP switch SW1 to all 0 (OFF).

### 7.2.10 Relay, Ground Supervision and Auxiliary Supply Wiring

COMMON TROUBLE CONTACTS
28 VDC, 1 AMP RESISTIVE LOAD


## ATTENTION!

Ground Fault Detection is required at all times. INX Ground fault detection can only be disabled IF it is interfering the FACP's Ground Fault Detection operation AND the FACP is used to manage the Ground Fault Detection.

Figure 66 Relay, Ground Supervision and Auxiliary Supply Wiring

### 7.2.11 Supervision of Auxiliary Supply Wiring



Figure 67 Relay, Ground Supervision and Auxiliary Supply Wiring

### 7.2.12 NAC Circuit Wiring - Class B



Figure 68 NAC Circuit Wiring - Class B

### 7.2.13 NAC Circuit Wiring-Class A



Figure 69 NAC Circuit Wiring - Class A

### 7.2.14 NAC 4 and 5 Door Release Wiring



Figure 70 Example door holder wiring on NAC4 and NAC5

### 7.2.15 Supervision of NAC4 and NAC5 Configured for Door Release



Figure 71 NAC4 and NAC5 Supervision

### 7.3 Power Supply Connections

The power supply is preinstalled as part of the Main Chassis. The following table displays the electrical ratings. Figure 72 Power Supply Connections shows the proper connections to wire the Power Supply successfully.

Table 39 Power Supply Electrical Ratings

| Connector/Jumper | Description |
| :--- | :--- |
| Electrical input ratings | $120 \mathrm{VAC}, 60 \mathrm{~Hz}, 2 \mathrm{~A} / 240 \mathrm{VAC}, 50 \mathrm{~Hz}, 1 \mathrm{~A}$ |
| Power supply total current | 10 A maximum |
| Battery Fuse | Replace with WX-058 Battery Cable Assembly |



Figure 72 Power Supply Connections

Attention: DO NOT exceed power supply ratings. Wire as shown using proper wire gauges.
Connect batteries after the system main A.C. power is turned on to reduce sparking.

### 7.4 System Checkout

The following are the recommended steps before and during the powering up of the INX-10A.

### 7.4.1 Before Turning The Power ON

1. To prevent sparking, DO NOT connect the batteries first. Connecting the batteries is only to be done after the system has been powered from the main AC Supply.
2. Check all field (external) wiring for opens, shorts, and ground.
3. Check that all interconnection cables are secure, and that all connectors are plugged-in properly.
4. Check all Jumpers and Switches for proper setting.
5. Check the AC power wiring for proper connection.
6. Check that the chassis is connected to EARTH GROUND (cold water pipe).
7. Close the front cover plate before powering the system from main AC supply.

### 7.4.2 Power-up Procedure

1. After completing 7.4.1 Before Turning The Power ON procedures, power-up the panel. The green AC-ON LED should illuminate.
2. Since the batteries are not connected, the Battery Trouble LED should illuminate, the Common Trouble LED should flash and the Trouble Relay (on the main board) will be active.
3. Connect the batteries while observing correct polarity; the red wire is positive (+) and black wire is negative ( - ).
4. All indicators should extinguish except for normal power AC-ON green LED.

### 7.5 Troubleshooting

The following are common methods to solving Circuit Ground Fault, Battery and Common troubles.

### 7.5.1 Circuit Trouble

Normally when a circuit trouble occurs, the Common Trouble indicator will be illuminated and the common trouble relay will be active. Additionally, the corresponding LED on the main board will be illuminated. This can be viewed by opening the panel and looking the top of the board. To correct the fault, check for open wiring on that particular circuit loop.

### 7.5.2 Ground Fault

This panel has a common ground fault detector. To correct the fault, check for any external wiring touching the chassis or other Earth Ground connection.

### 7.5.3 Battery Trouble

Check for the presence of batteries and their conditions. Low voltage (below 20.4V) will cause a battery trouble. If battery trouble condition persists, replace batteries as soon as possible.

### 7.5.4 Common Trouble

If only a common trouble is indicated on the main panel and none of those above confirming trouble indicators are on, then check the following for possible fault

- any missing interconnection wiring
- improperly secured cabling


### 8.0 Appendix A - Specifications and Features

Table 40 INX-10A, INX-10ADS and INX-10AC Specifications and Features

## INX-10A, INX-10ADS and INX-10AC Chassis

| General | Micro-controller based design, fully configurable from DIP Switches on front panel. |
| :---: | :---: |
| NAC Circuits | 5 Class B (Style Y) or Class A (Style Z) configurable as strobes or audibles. Terminals are labeled "NAC". <br> Power limited / 24 VDC regulated / 2.5 A @ $49^{\circ} \mathrm{C}$ per Circuit |
| Aux. Power Supply. | Terminals are labelled AUX PWR. <br> Power limited / 24 VDC Filtered (special application) / 1.7 A @ $49^{\circ} \mathrm{C}$ |
| Auxiliary relays (resistive loads) | Must be connected to a Listed Power Limited Source of Supply. Terminals are labelled "GROUND" and "TROUBLE". <br> Ground Fault <br> Common Trouble <br> Form C, 1 Amp, 28 VDC <br> Form C, 1 Amp, 28 VDC |
| Electrical ratings | AC line voltage $120 \mathrm{~V} 60 \mathrm{~Hz} / 240 \mathrm{~V}, 50 \mathrm{~Hz}$ <br>  $2 \mathrm{Amps} / 1 \mathrm{Amp}$ (primary) <br> Maximum allowable current $120 \mathrm{~V} @ 4.25 \mathrm{~A}$ <br>  $240 \mathrm{~V} @ 2.125 \mathrm{~A}$ <br> NAC Circuits 24 VDC regulated, Power Limited <br>  10 A Total, 2.5A maximum per circuit |
| Battery | Type $2 \times 12 \mathrm{VDC}$, Gel-Cell/Sealed Lead-Acid <br> Charging capability 4 Ah to 40 Ah batteries <br> Current Consumption standby: 200 mA <br> alarm: 350 mA |
| Compliance | System Model INX Addressable NAC Expander <br> Applicable Standards ULC S527-11, UL 864 10th Edition <br>  and UL 1481 R5 |

### 9.0 Appendix B - Power Supply \& Battery Calculations

Use the form below to determine the required Main Chassis and Secondary Power Supply (batteries).

## IMPORTANT NOTICE

The main AC branch circuit connection for Fire Alarm Control Unit must provide a dedicated continuous power without provision of any disconnect devices. Use \#12 AWG wire with 600-volt insulation and proper over-current circuit protection that complies with the local codes. Refer to8.0 Appendix A - Specifications and Features for specifications.

Power Requirements (All currents are in amperes)

| Model Number | Description | Qty |  | Standby | Total <br> Standby | Alarm | Total <br> Alarm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| INX-10A | Main Chassis (10 <br> Amp) |  | X | 0.200 | $=$ | 0.350 | $=$ |
| INX-10ADS | Chassis (10 Amp) |  | X | 0.200 | $=$ | 0.350 | $=$ |
| INX-10AC | Chassis (10 Amp) |  | X | 0.200 | $=$ | 0.350 | $=$ |
| Signal Load (bells, horns, strobes, and etc.) |  | X |  |  | $=$ |  |  |
| Auxiliary Power Supply |  |  |  |  |  | $=$ | Alarm |
| Total currents (Add above currents) |  |  |  |  |  |  |  |

Total Current Requirement
ALARM (B) $\qquad$ Amps.

Battery Capacity Requirement
([STANDBY (A) $\qquad$ ] X [(24 or 60 Hours) $\qquad$ ]) $+($ (ALARM (B) $\qquad$ ] X [*Alarm in Hr.] $\qquad$ ) $=$ (C) $\qquad$ AH

## Battery Selection

Multiply (C) by 1.20 to derate battery.
Batteries BA-104(4AH), BA-1065(7AH) and BA-110(12AH) will fit into the INX-10A, BA-117 (18 Ah) fit in the INX-10ADS only
*Use 0.084 for five minutes of alarm or 0.5 for thirty minutes of alarm as a multiplier figure.

### 10.0 Appendix C - Sample Applications

### 10.1 Minimal Size Single Stage Addressable System - Factory Default Settings

In a minimal size system the INX-10A will require 7 addresses. The following are the specs for the system.

| Bas | ddress | 193 |
| :---: | :---: | :---: |
| Prot |  | System Sensor |
| AC | ure Report Delay | No Delay |
| Cha |  | Yes |
| Batt |  | Yes |
| Cut | arger when NACs activated | Yes |
| Aler | ate | N/A |
| Eva | ation Rate | Temporal |
| Stro | Type | None |
| NAC | Output Settings | NAC |
| NAC | Output Settings | NAC |
| SW1 |  |  |
| SW2 |  |  |
| SW3 |  |  |
| SW4 |  |  |
| SW5 |  |  |

### 10.2 Minimal Two Stage Addressable System

In a minimal size system the INX-10A will require 7 addresses. The following are the specs for the system.


### 10.3 Minimal ULC Two Stage Addressable System

In a minimal size system the INX-10A will require 7 addresses. The following are the specs for the system.


### 11.0 Appendix D - FX-2000 and FleX-Net Series ULI Compatible Devices

### 11.1 Horns and Bells

Table 41 FX-2000 and FleX-Net Series ULI Compatible Horns and Bells

| Manufacturer | Device Type | Horn Model | Max. Strobe/NAC |
| :---: | :---: | :---: | :---: |
| System Sensor -SpectrAlert | Horn | H12/24 | n/a |
|  | Horn | H12/24W | n/a |
| Wheelock | Horn | AH-24-R | n/a |
|  | Horn | AH-24-WP-R | n/a |
|  | Horn | MT-12/24-ULC | n/a |
|  | Horn | AMT-12/24-R-ULC | n/a |
|  | Bell | MB-G6-24-R | n/a |
|  | Bell | MB-G10-24-R | n/a |

### 11.2 Synchronized Strobes

Table 42 FX-2000 and FleX-Net Series ULI Compatible Synchronized Strobes

| Manufacturer | Brand | Strobe Model | Max. Strobe/NAC |
| :--- | :--- | :--- | :--- |
| Amseco/Potter | Mircom | FHS-240-110 | 15 |
| Gentex Corp. | Secutron | MRA-HS3-24ww | 20 |
| SpectrAlert | System Sensor | P1224 MC | 25 |
| Wheelock | Wheelock | NS-24 MCW -FW | 25 |

### 11.3 UL and ULC Listed Compatible Horn/Strobes

Table 43 UL and ULC Listed Compatible Horn/Strobes

| Device | Mircom Part \# |
| :--- | :--- |
| Horns/Strobes | FH-400-WW, FH-400-RR, FS-400-WW, FS-400-RR, FS-400C- |
|  | WW, FS-400C-RR, FHS-400-WW, FHS-400-RR, FHS-400C-WW, <br> FHS-400C-RR |

### 11.4 ULI Compatible Horn/Strobes

Table 44 ULI Compatible Horn/Strobes

| System Sensor <br> L Series Models | Description |
| :--- | :--- |
| P2RL | HORN STROBE 2W RED WALL |

Table 44 ULI Compatible Horn/Strobes (Continued)

| System Sensor <br> L Series Models | Description |
| :---: | :---: |
| P2WL | HORN STROBE 2W WHITE WALL |
| P2GRL | HORN STROBE 2W RED WALL, COMPACT |
| P2GWL | HORN STROBE 2W WHITE WALL, COMPACT |
| P2RL-P | HORN STROBE 2W RED WALL, PLAIN |
| P2WL-P | HORN STROBE 2W WHITE WALL, PLAIN |
| P2RL-SP | HORN STROBE 2W RED WALL, FUEGO |
| P2WL-SP | HORN STROBE 2W WHITE WALL, FUEGO |
| PC2RL | HORN STROBE 2W RED CEILING |
| PC2WL | HORN STROBE 2W WHITE CEILING |
| SRL | STROBE RED WALL |
| SWL | STROBE WHITE WALL |
| SGRL | STROBE RED WALL, COMPACT |
| SGWL | STROBE WHITE WALL, COMPACT |
| SRL-P | STROBE RED WALL, PLAIN |
| SWL-P | STROBE WHITE WALL, PLAIN |
| SRL-SP | STROBE RED WALL, FUEGO |
| SWL-CLR-ALERT | STROBE WHITE WALL, CLEAR LENS |
| SWL-ALERT | STROBE WHITE WALL, AMBER LENS |
| SCRL | STROBE RED CEILING |
| SCWL | STROBE WHITE CEILING |
| SCWL-CLR-ALERT | STOBE WHITE CEILING CLEAR LENS ALERT |
| HWL | HORN WHITE WALL |
| HRL | HORN RED WALL |
| HGRL | HORN RED WALL, COMPACT |
| HGWL | HORN WHITE WALL, COMPACT |
| CHWL | CHIME WHITE WALL |
| CHRL | CHIME RED WALL |
| CHSRL | CHIME STROBE RED WALL |
| CHSWL | CHIME STROBE WHITE WALL |
| CHSCRL | CHIME STROBE RED CEILING |
| CHSCWL | CHIME STROBE WHITE CEILING |

Table 44 ULI Compatible Horn/Strobes (Continued)

| System Sensor <br> L Series Models | Description |
| :--- | :--- |
| SPSRL | SPEAKER STROBE RED WALL |
| SPSWL | SPEAKER STROBE WHITE WALL |
| SPSRL-P | SPEAKER STROBE RED WALL, PLAIN |
| SPSWL-P | SPEAKER STROBE WHITE WALL, PLAIN |
| SPSRL-SP | SPEAKER STROBE RED WALL, FUEGO |
| SPSWL-ALERT | SPEAKER STROBE WHITE WALL CLEAR LENS, ALERT |
| SPSWL-CLR-ALERT | SPEAKER STROBE RED CEILING |
| SPSCRL | SPEAKER STROBE WHITE CEILING |
| SPSCWL | SPEAKER STROBE WHITE CEILING, FUEGO |
| SPSCWL-P | SPEAKER STROBE WHITE CEILING, ALERT |
| SPSCWL-SP |  |
| SPSCWL-CLR-ALERT |  |

### 11.5 ULC Compatible Horn/Strobes

Table 45 ULC Compatible Horn/Strobes

| System Sensor <br> L Series Models | Description |
| :--- | :--- |
| P2WLA-P | Horn Strobe 2W White Wall, Plain |
| P2WLA-F | Horn Strobe 2W White Wall - French "FEU" |
| P2WLA-E | Horn Strobe 2W White Wall - English "FIRE" |
| P2WLA | Horn Strobe 2W White Wall - Bilingual "FIRE/FEU" |
| P2RLA-P | Horn Strobe 2W Red Wall, Plain |
| P2RLA-F | Horn Strobe 2W Red Wall - English "FIRE" |
| P2RLA-E | Horn Strobe 2W Red Wall - Bilingual "FIRE/FEU" |
| P2RLA | Horn Strobe 2W White Wall, Compact - English "FIRE" |
| P2GWLA-F | Horn Strobe 2W White Wall, Compact - Bilingual "FIRE/FEU" |
| P2GWLA-E | Horn Strobe 2W Red Wall, Compact - French "FEU" |
| P2GWLA | Horn Strobe 2W Red Wall, Compact - Bilingual "FIRE/FEU" |
| P2GRLA-F | Horn Strobe 2W Red Wall, Compact- English "FIRE" |
| P2GRLA | Horn Red Wall, Compact |
| P2GRLA-E | Horn White Wall, Compact |
| HGRLA | HGWLA |

Table 45 ULC Compatible Horn/Strobes

| System Sensor <br> LSeries Models | Description |
| :--- | :--- |
| HRLA | Horn Red Wall |
| HWLA | Horn White Wall |
| CHRLA | Chime Red Wall |
| CHSCRLA | Chime Strobe Red Ceiling - Bilingual "FIRE/FEU" |
| CHSCRLA-E | Chime Strobe Red Ceiling - English "FIRE" |
| CHSCRLA-F | Chime Strobe Red Ceiling - French "FEU" |
| CHSCWLA | Chime Strobe White Ceiling - Bilingual "FIRE/FEU" |
| CHSCWLA-E | Chime Strobe White Ceiling - English "FIRE" |
| CHSCWLA-F | Chime Strobe White Ceiling - French "FEU" |
| CHSRLA | Chime Strobe Red Wall - Bilingual "FIRE/FEU" |
| CHSRLA-E | Chime Strobe Red Wall - English "FIRE" |
| CHSRLA-F | Chime Strobe Red Wall - French "FEU" |
| CHSWLA | Chime Strobe White Wall - Bilingual "FIRE/FEU" |
| CHSWLA-E | Chime Strobe White Wall - English "FIRE" |
| CHSWLA-F | Chime Strobe White Wall - French "FEU" |
| CHWLA | Chime White Wall |

## WARNING!

Please read this document CAREFULLY, as it contains important warnings, life-safety, and practical information about all products manufactured by the Mircom Group of Companies, including Mircom and Secutron branded products, which shall include without limitation all fire alarm, nurse call, building automation and access control and card access products (hereinafter individually or collectively, as applicable, referred to as "Mircom System").

## NOTE TO ALL READERS:

1. Nature of Warnings. The within warnings are communicated to the reader out of an abundance of caution and create no legal obligation for Mircom Group of Companies, whatsoever. Without limiting the generality of the foregoing, this document shall NOT be construed as in any way altering the rights and obligations of the parties, governed by the legal documents that apply in any given circumstance.
2. Application. The warnings contained in this document apply to all Mircom System and shall be read in conjunction with:
a. the product manual for the specific Mircom System that applies in given circumstances;
b. legal documents that apply to the purchase and sale of a Mircom System, which may include the company's standard terms and conditions and warranty statements;
c. other information about the Mircom System or the parties' rights and obligations as may be application to a given circumstance.
3. Security and Insurance. Regardless of its capabilities, no Mircom System is a substitute for property or life insurance. Nor is the system a substitute for property owners, renters, or other occupants to act prudently to prevent or minimize the harmful effects of an emergency situation. Building automation systems produced by the Mircom Group of Companies are not to be used as a fire, alarm, or life-safety system.

## NOTE TO INSTALLERS:

All Mircom Systems have been carefully designed to be as effective as possible. However, there are circumstances where they may not provide protection. Some reasons for system failure include the following. As the only individual in contact with system users, please bring each item in this warning to the attention of the users of this Mircom System. Failure to properly inform system end-users of the circumstances in which the system might fail may result in over-reliance upon the system. As a result, it is imperative that you properly inform each customer for whom you install the system of the possible forms of failure:
4. Inadequate Installation. All Mircom Systems must be installed in accordance with all the applicable codes and standards in order to provide adequate protection. National standards require an inspection and approval to be conducted by the local authority having jurisdiction following the initial installation of the system and following any changes to the system. Such inspections ensure installation has been carried out properly.
5. Inadequate Testing. Most problems that would prevent an alarm a Mircom System from operating as intended can be discovered by regular testing and maintenance. The complete system should be tested by the local authority having jurisdiction immediately after a fire, storm, earthquake, accident, or any kind of construction activity inside or outside the premises. The testing should include all sensing devices, keypads, consoles, alarm indicating devices and any other operational devices that are part of the system.

## NOTE TO USERS:

All Mircom Systems have been carefully designed to be as effective as possible. However, there are circumstances where they may not provide protection. Some reasons for system failure include the following. The end user can minimize the occurrence of any of the following by proper training, testing and maintenance of the Mircom Systems:
6. Inadequate Testing and Maintenance. It is imperative that the systems be periodically tested and subjected to preventative maintenance. Best practices and local authority having jurisdiction determine the frequency and type of testing that is required at a minimum. Mircom System may not function properly, and the occurrence of other system failures identified below may not be minimized, if the periodic testing and maintenance of Mircom Systems is not completed with diligence and as required.
7. Improper Operation. It is important that all system users be trained in the correct operation of the alarm system and that they know how to respond when the system indicates an alarm. A Mircom System may not function as intended during an emergency situation where the user is unable to operate a panic or emergency switch by reason of permanent or temporary physical disability, inability to reach the device in time, unfamiliarity with the correct operation, or related circumstances.
8. Insufficient Time. There may be circumstances when a Mircom System will operate as intended, yet the occupants will not be protected from the emergency due to their inability to respond to the warnings in a timely manner. If the system is monitored, the response may not occur in time enough to protect the occupants or their belongings.
9. Carelessness or Safety Hazards. Moreover, smoke detectors may not provide timely warning of fires caused by carelessness or safety hazards such as smoking in bed, violent explosions, escaping gas, improper storage of flammable materials, overloaded electrical circuits or children playing with matches or arson.
10. Power Failure. Some Mircom System components require adequate electrical power supply to operate. Examples include: smoke detectors, beacons, HVAC, and lighting controllers. If a device operates only by AC power, any interruption, however brief, will render that device inoperative while it does not have power. Power interruptions of any length are often accompanied by voltage fluctuations which may damage Mircom Systems or other electronic equipment. After a power interruption has occurred, immediately conduct a complete system test to ensure that the system operates as intended.
11. Battery Failure. If the Mircom System or any device connected to the system operates from batteries it is possible for the batteries to fail. Even if the batteries have not failed, they must be fully charged, in good condition, and installed correctly. Some Mircom Systems use replaceable batteries, which have a limited life-span. The expected battery life is variable and in part dependent on the device environment, usage and type. Ambient conditions such as high humidity, high or low temperatures, or large temperature fluctuations may reduce the expected battery life. Moreover, some Mircom Systems do not have a battery monitor that would alert the user in the event that the battery is nearing its end of life. Regular testing and replacements are vital for ensuring that the batteries function as expected, whether or not a device has a low-battery monitor.
12. Physical Obstructions. Motion sensors that are part of a Mircom System must be kept clear of any obstacles which impede the sensors' ability to detect movement. Signals being communicated by a Mircom System may not reach the receiver if an item (such as metal, water, or concrete) is placed on or near the radio path. Deliberate jamming or other inadvertent radio signal interference can also negatively affect system operation.
13. Wireless Devices Placement Proximity. Moreover all wireless devices must be a minimum and maximum distance away from large metal objects, such as refrigerators. You are required to consult the specific Mircom System manual and application guide for any maximum
distances required between devices and suggested placement of wireless devices for optimal functioning.
14. Failure to Trigger Sensors. Moreover, Mircom Systems may fail to operate as intended if motion, heat, or smoke sensors are not triggered.
a. Sensors in a fire system may fail to be triggered when the fire is in a chimney, walls, roof, or on the other side of closed doors. Smoke and heat detectors may not detect smoke or heat from fires on another level of the residence or building. In this situation the control panel may not alert occupants of a fire.
b. Sensors in a nurse call system may fail to be triggered when movement is occurring outside of the motion sensors' range. For example, if movement is occurring on the other side of closed doors or on another level of the residence or building the motion detector may not be triggered. In this situation the central controller may not register an alarm signal.
15. Interference with Audible Notification Appliances. Audible notification appliances may be interfered with by other noise sources such as stereos, radios, televisions, air conditioners, appliances, or passing traffic. Audible notification appliances, however loud, may not be heard by a hearing-impaired person.
16. Other Impairments. Alarm notification appliances such as sirens, bells, horns, or strobes may not warn or waken a sleeping occupant if there is an intervening wall or door. It is less likely that the occupants will be alerted or awakened when notification appliances are located on a different level of the residence or premise.
17. Software Malfunction. Most Mircom Systems contain software. No warranties are provided as to the software components of any products or stand-alone software products within a Mircom System. For a full statement of the warranties and exclusions and limitations of liability please refer to the company's standard Terms and Conditions and Warranties.
18. Telephone Lines Malfunction. Telephone service can cause system failure where telephone lines are relied upon by a Mircom System. Alarms and information coming from a Mircom System may not be transmitted if a phone line is out of service or busy for a certain period of time. Alarms and information may not be transmitted where telephone lines have been compromised by criminal tampering, local construction, storms or earthquakes.
19. Component Failure. Although every effort has been made to make this Mircom System as reliable as possible, the system may fail to function as intended due to the failure of a component.
20. Integrated Products. Mircom System might not function as intended if it is connected to a non-Mircom product or to a Mircom product that is deemed non-compatible with a particular Mircom System. A list of compatible products can be requested and obtained.

## Warranty

Purchase of all Mircom products is governed by:
https://www.mircom.com/product-warranty
https://www.mircom.com/purchase-terms-and-conditions
https://www.mircom.com/software-license-terms-and-conditions

